Může Bayesův faktor nahradit P hodnotu?

Bd.18,Nr.1(2021)
Nové přístupy v metodologii sociálněvědního výzkumu

Abstract

The P value was introduced as a value to evaluate the results of statistical tests. The basic concept originated in the 1920s, and after the Second World War it was significantly expanded. For about the last three decades there has been intense discussion about the problematic features of the P value concept and its use in science, and voices calling to abolish use of the P value are growing louder. In addition, suggestions have been made for alternative procedures that could replace or supplement the P value. Statisticians have tried to invent an indicator similar to the P value, but without its weaknesses. There are many of these options. Besides alternatives within the classical statistical testing paradigm, the use of an alternative statistical approach, so-called Bayesian statistics, is increasingly being discussed. An example of a moderate recommendation is that of using the Bayes factor, essentially an analogue of the P value in the Bayesian world. The aim of this article is to present the Bayes factor in detail, to describe its similarities and dissimilarities with the P value, and discuss the possibilities of its calculation. In addition to computational procedures, a detailed discussion of the weaknesses of the Bayes factor is also included.


Schlagworte:
quantitative data analysis; statistical testing; P value; Bayes factor
Literaturhinweise

AERA. 2006. „Standards for Reporting on Empirical Social Science Research in AERA Publications.“ Educational Researcher 35(6): 33–40. https://doi.org/10.3102/0013189X035006033

APA. 2010. Publication Manual of the American Psychological Association. 6th Edition. Washington, DC: American Psychological Association.

BAYES, Thomas a R. PRICE. 1763. „An Essay towards Solving a Problem in the Doctrine of Chance. By the Late Rev. Mr. Bayes, Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.“ Philosophical Transactions of the Royal Society of London 53: 370–418. https://doi.org/10.1098/rstl.1763.0053

BERNARDI, Fabrizio, Lela CHAKHAIA a Liliya LEOPOLD. 2017. „Sing Me a Song with Social Significance: The (Mis)Use of Statistical Significance Testing in European Sociological Research.“ European Sociological Review 33(1): 1–15. https://doi.org/10.1093/esr/jcx044

BLUME, Jeffrey D., Lucy D’AGOSTINO MCGOWAN, William D. DUPONT a Robert A. GREEVY Jr. 2018. „Second Generation p-Values: Improved Rigor, Reproducibility, & Transparency in Statistical Analyses.“ PLoS ONE 13(3): e0188299. https://doi.org/10.1371/journal.pone.0188299

COHEN, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd Edition. Lawrence Earlbaum Associates.

COLQUHOUN, David. 2019. „The False Positive Risk: A Proposal Concerning What to Do About p-Values.“ The American Statistician 73(sup1): 192–201. https://doi.org/10.1080/00031305.2018.1529622

CUBEREK, Roman a Karel FRÖMEL. 2011. „K problematice výzkumného výběru a testování nulové hypotézy.“ Československá psychologie 55(5): 468–477.

CUMMING Geoff a Sue FINCH. 2005. „Inference by Eye: Confidence Intervals and How to Read Pictures of Data.“ American Psychologist 60(2): 170–180. https://doi.org/10.1037/0003-066X.60.2.170

DEPAOLI, Sarah a Rens van de SCHOOT. 2017. „Improving Transparency and Replication in Bayesian Statistics: The WAMBS-Checklist.“ Psychological Methods 22: 240–261. https://doi.org/10.1037/met0000065

EFRON, Bradley. 1979. „Bootstrap Methods: Another Look at the Jackknife.“ Annals of Statistics 7(1): 1–26. https://doi.org/10.1214/aos/1176344552

GELMAN, Andrew, John B. CARLIN, Hal S. STERN, David B. DUNSON, Aki VEHTARI a Donald B. RUBIN, 2013. Bayesian Data Analysis. Third Edition. Boca Raton, FL: CRC Press. https://doi.org/10.1201/b16018

GIGERENZER, Gerd. 2018. „Statistical Rituals: The Replication Delusion and How We Got There.“ Advances in Methods and Practices in Psychological Science 1(2): 198–218. https://doi.org/10.1177/2515245918771329

GOOD, Irving J. 1979. „Studies in the History of Probability and Statistics. XXXVII A. M. Turing's Statistical Work in World War II.“ Biometrika 66(2): 393–396. https://doi.org/10.1093/biomet/66.2.393

HALLER, Heiko a Stefan KRAUSS. 2002. „Misinterpretations of Significance: A Problem Students Share with Their Teachers?“ MPR-online 7(1): 1–20.

JEFFREYS, Harold. 1939. Theory of Probability. 1st Edition. Oxford: The Clarendon Press.

JEFFREYS, Harold. 1948. Theory of Probability. 2nd Edition. Oxford: The Clarendon Press,.

JEFFREYS, Harold. 1961. Theory of Probability. 3rd Edition. Oxford: Oxford University Press.

KAPLAN, David. 2014. Bayesian Statistics for the Social Sciences. New York: Guilford Publications.

KASS, Robert E. a Adrian E. RAFTERY. 1995. „Bayes Factors.“ Journal of the American Statistical Association 90(430): 773–795. https://doi.org/10.1080/01621459.1995.10476572

KRUSCHKE, John. 2014. Doing Bayesian Data Analysis. A Tutorial with R, JAGS, and Stan. 2nd Edition. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-405888-0.00008-8

LAKENS, Daniël, Anne M. SCHEEL, Peder M. ISAGER. 2018. „Equivalence Testing for Psychological Research: A Tutorial.“ Advances in Methods and Practices in Psychological Science 1(2): 259–269. https://doi.org/10.1177/2515245918770963

LEE, Michael D. a Eric-Jan WAGENMAKERS. 2013. Bayesian cognitive modeling: A practical course. Cambridge: Cambridge University Press.

LEE, Peter M. 2012. Bayesian Statistics: An Introduction. Hoboken, NJ: Wiley.

OAKES, M. W. 1986. Statistical Inference: A Commentary for the Social and Behavioural Sciences. Hoboken, NJ: Wiley.

RAFTERY, Adrian. 1995. „Bayesian Model Selection in Social Research.“ Sociological Methodology 25: 111–163. https://doi.org/10.2307/271063

SELLKE, Thomas, M. J. BAYARRI a James O. BERGER. 2001. „Calibration of p Values for Testing Precise Null Hypotheses.“ The American Statistician 55: 62–71. https://doi.org/10.1198/000313001300339950

SIMONSOHN, Uri, Leif D. NELSON a Joseph P. SIMMONS. 2014. „P-Curve: A Key to the File-Drawer.“ Journal of Experimental Psychology: General 143(2): 534–547. https://doi.org/10.1037/a0033242

SOUKUP, Petr. 2010. „Nesprávná užívání statistické významnosti a jejich možná řešení.“ Data a výzkum – SDA Info 4(2): 77–104.

SOUKUP, Petr. 2013. „Věcná významnost výsledků a její možnosti měření.“ Data a výzkum – SDA Info 7 (2): 125–148. https://doi.org/10.13060/23362391.2013.127.2.41

SOUKUP, Petr. 2019. „P a d (Používání statistické a věcné významnosti v českých sociálních vědách).“ Sociologický časopis 55(2): 215–254. https://doi.org/10.13060/00380288.2019.55.2.459

SOUKUP, Petr a Ladislav RABUŠIC. 2007. „Několik poznámek k jedné obsesi českých sociálních věd – statistické významnosti.“ Sociologický časopis 43(2): 379–395. https://doi.org/10.13060/00380288.2007.43.2.06

WAGENMAKERS, Eric-Jan. 2007. „A Practical Solution to the Pervasive Problems of p Values.“ Psychonomic Bulletin & Review 14: 779–804. https://doi.org/10.3758/BF03194105

WASSERMAN, Larry. 2004. All of Statistics (A Concise Course in Statistical Inference). New York: Springer. https://doi.org/10.1007/978-0-387-21736-9

WETZELS, Ruud, Dora MATZKE, Michael D. LEE, Jeffrey N. ROUDER, Geoffrey J. IVERSON, Eric-Jan WAGENMAKERS. 2011. „Statistical Evidence in Experimental Psychology: An Empirical Comparison Using 855 t Tests.“ Perspectives on Psychological Science 6: 291–298. https://doi.org/10.1177/1745691611406923

ZELLNER Arnold a Aloysius SIOW. 1980. „Posterior Odds Ratios for Selected Regression Hypotheses.“ Trabajos de Estadistica Y de Investigacion Operativa 31: 585–603.
https://doi.org/10.1007/BF02888369

Metriky

0

Crossref logo

0


250

Views

342

PDF (Tschechisch) views

37

mobi (Tschechisch) views

29

EPUB (Tschechisch) views