VÝVOJ LEDOVCOVÝCH SEDIMENTŮ NA KONTAKTU S ŽULOVSKÝM MASIVEM VE ŠTACHLOVICÍCH U VIDNAVY
Roč.23,č.1-2(2016)
The Žulová Upland is composed of granitoids of the Žulová batholith with relicts of Pleistocene (Elsterian) continental glaciation sediments. The investigated outcrop represents development of glacigenic sediments on rugged topography of the Žulová Upland. Investigated locality is situated on a hill located on the northern margin of the Žulová Upland. It is located near Štachlovice, local part of the Vidnava town. The exposed part of the hilltop reveals a preglacial basement covered by glacigenic sediments. The facies analysis and gravel petrology analysis of clasts with fraction 16–64 mm in b-axis were undertaken on the walls of the outcrop. The Georadar (GPR, Ground penetrating radar) was used to investigate the sedimentary landform and its relation to the basement. The granitoid basement is in places formed by elevations covered by glacigenic sediments. The height of elevation reaches 350 cm
in outcrop, or ca ~400 cm according to the GPR survey. The glacitectonite, formed on the gentle side of elevation, is composed of angular blocks of granitoids of the Žulová batholith, diamicton, sand, gravel and deformed glacifluvial sand. The glacitectonite was deposited during the advancement of the continental glacier. The original subglacial cavity is enclosed by a steep side of the elevation. This cavity is filled by foreset body composed of stratified sand and gravel and nonstratified gravelly sand, gravel and diamicton. The cavity was filled by high-density turbidity currents and debris flow in subaqueous-subaerial environment. The infill of the cavity reaches ~400 cm in thickness according to the GPR survey. The cavity was filled during deglaciation in subglacial environment. The glacitectonite underlies the diamicton (supraglacial till) that was deposited as a debris flow during the retreat of the continental glacier. Unsorted gravel overlaps with erosional base the infill of the cavity, this gravel has a huge extent according to the GPR survey. This sediment represents the environment of terminoglacial stream. Gravel material of all types of glacigenic sediments is mainly composed of rocks from the Rychleby Mts. (amphibolites, Gierałtow orthogneiss, other diverse gneisses, quartzites, mica schist),
quartz, and Nordic and Polish rocks. Subglacial sediments contain clasts of amphibolites (~40 %), on the other hand supraglacial and terminoglacial sediments are more polymict. Dominant subrounded shape (~60–70 %) of clasts and composition of this material indicates its origin in preglacial fluvial sediments. These fluvial sediments were deposited by river flowing from the Rychleby Mts. towards their northern foreland. The locality represents preglacial elevation of bedrock, which was glacitectonically deformed during the glaciation. Lots of different types of sediments (sub-, supra-, and terminoglacial) were deposited around the elevation during deglaciation period. The elevation was completely buried by these sediments. Deposition of these sediments was related with morphology of the elevation of bedrock. Formation of these sediments took place in environment analogous to environment of part bedrock/part till drumlin (Stokes et al. 2011).
Pleistocene; continental glaciation; glacitectonite; subglacial cavity infill; supraglacial melt-out till; terminoglacial stream sediments; drumlin; Žulová Upland
Aario R. – Peuraniemi V. (1992): Glacial dispersal of till constituents in morainic landforms of different types. – Geomorphology, 6, 9–25. https://doi.org/10.1016/0169-555X%2892%2990044-O">https://doi.org/10.1016/0169-555X(92)90044-O
Benn D. I. – Evans D. J. A (2010): Glaciers and glaciation – 802 s. Hodder Education. London. Second edition.
Bennett M. R. – Huddart D. – Waller R. I. (2006): Diamict fans in subglacial water-filled cavities – a new glacial environment. – Quaternary Science Reviews, 25, 3050–3069. https://doi.org/10.1016/j.quascirev.2006.05.004">https://doi.org/10.1016/j.quascirev.2006.05.004
Boulton G. S. (1972): Modern Arctic glaciers as depositional models for former ice sheets. – Journal of the Geological Society of London, 128, 361–393. https://doi.org/10.1144/gsjgs.128.4.0361">https://doi.org/10.1144/gsjgs.128.4.0361
Brodzikowski K. – Van Loon A. J. (1991): Glacigenic Sediments. – 674 s. Elsevier. Amsterdam.
Cassidy N. J. – Russell A. J. – Marren P. M. – Fay H. – Knudssen O. – Rushmer E. L. – van Dijk T. A. G. P. (2003): GPR derived architecture of November 1996 jokulhlaup deposits, Skeidararsandur, Iceland. – In: Bristow C. S. – Jol H. M. (eds.): Ground Penetrating Radar in Sediments. 153–166, Geological Society, Special Publications, 211, London.
Clerc S. – Buoncristiani J.-F. – Guiraud M. – Desaubliaux G. – Portier E. (2012): Depositional model in subglacial cavities, Killiney Bay, Ireland. Interactions between sedimentation, deformation and glacial dynamics. – Quaternary Science Reviews, 33, 142–164. https://doi.org/10.1016/j.quascirev.2011.12.004">https://doi.org/10.1016/j.quascirev.2011.12.004
Croot D. G. – Sims P. C. (1996): Early stages of till genesis: an example from Fanore, County Clare, Ireland. – Boreas, 25, 37–46. https://doi.org/10.1111/j.1502-3885.1996.tb00833.x">https://doi.org/10.1111/j.1502-3885.1996.tb00833.x
Evans D. J. A. – Phillips E. R. – Hiemstra J. F. – Auton C. A. (2006): Subglacial till: Formation, sedimentary characteristics and classification. – Earth-Science Reviews, 78, 115–176. https://doi.org/10.1016/j.earscirev.2006.04.001">https://doi.org/10.1016/j.earscirev.2006.04.001
Eyles N. – Clark B. M. (1987): Coarse-grained sediment gravity flow facies in a large supraglacial lake. – Sedimentology, 34, 193–216. https://doi.org/10.1111/j.1365-3091.1987.tb00771.x">https://doi.org/10.1111/j.1365-3091.1987.tb00771.x
Eyles N. – Eyles C. H. – Miall A. D. (1983): Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. – Sedimentology, 30, 393–410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x">https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
Ewertowski M. – Kasprzak L. – Szuman I. – Tomczyk A. M. (2011): Controlled, ice-cored moraines: sediments and geomorphology. An example from Ragnarbreen, Svalbard. – Zeitschrift für Geomorphologie, 56, 53–74.
Gába Z. (1972): Souvková hlína ze Skorošic a směr pohybu pevninského ledovce. – Zprávy Vlastivědného ústavu v Olomouci, 155, 23–28.
Gába Z. (1992): Profil ledovcovými uloženinami u Vidnavy ve Slezsku. – Časopis Slezského muzea (A), 41, 167–172.
Hambrey M. J. – Glasser N. F. (2012): Discriminating glacier thermal and dynamic regimes in the sedimentary record. – Sedimentary Geology, 251-252, 1–33.
Hanáček M. (2014): Význam valounových analýz ledovcových sedimentů pro paleogeografické rekonstrukce pleistocenního kontinentálního zalednění Jesenicka. – Geologické výzkumy na Moravě a ve Slezsku, 21 (1–2), 17–24.
Hanáček M. – Nývlt D. – Nehyba S. (2013): Písečník u Javorníku - drumlin se zachovalou sukcesí subglaciálních a supraglaciálních sedimentů. – Geologické výzkumy na Moravě a ve Slezsku, 20, 22–29.
Hanáček M. – Skácelová Z. – Nehyba S. – Nývlt D. (2015): Nová interpretace ledovcových sedimentů lokality Písečná u Jeseníku. – In: Nohálová H. – Káňa V. – Březina J. (eds.): 21. Kvartér 2015, Brno 27. 11. 2015, Sborník abstrakt, 17–19. Masarykova univerzita.
Kjær K. H. – Krüger J. (2001): The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. – Sedimentology, 48, 935–952. https://doi.org/10.1046/j.1365-3091.2001.00402.x">https://doi.org/10.1046/j.1365-3091.2001.00402.x
Kłysz P. – Lindner L. (1982): Evolution of the marginal zone and the forefield of the Bunge Glacier, Spitsbergen . – Acta Geologica Polonica, 32, 253–266.
Kostic B. – Becht A. – Aigner T. (2005): 3-D sedimentary architecture of Quaternary gravel delta (SW-Germany): Implications for hydrostratigraphy. – Sedimentary Geology, 181, 143–171.
Krzyszkowski D. (2002): Sedimentary successions in ice-marginal fans of the Late Saalian glaciation, southwestern Poland. – Sedimentary Geology, 149, 93–109. https://doi.org/10.1016/S0037-0738%2801%2900246-9">https://doi.org/10.1016/S0037-0738(01)00246-9
Krzyszkowski D. – Zieliński T. (2002): The Pleistocene end moraine fans: controls on their sedimentation and location. – Sedimentary Geology, 149, 73–92. https://doi.org/10.1016/S0037-0738%2801%2900245-7">https://doi.org/10.1016/S0037-0738(01)00245-7
Livingstone S. J. – Evans D. J. A. – Cofaigh C., Ó. – Hopkins J. (2010): The Brampton kame belt and Pennine escarpment meltwater channel systém (Cumbria, UK): Morphology, sedimentology and formation. – Proceedings of the Geologistsʼ Association, 121, 423–443.
Lowe D. R. (1982): Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. – Journal of Sedimentary Petrology, 52, 279–297.
McCabe A. M. (1991): The distribution and stratigraphy of drumlins in Ireland. – In: Ehlers J. – Gibbard P. L. – Rose J. (eds.): Glacial deposits in Great Britain and Ireland, 421–435, A.A. Balkema.
Meehan R. T. – Warren W. P. – Gallagher C. J. D. (1997): The sedimentology of a Late Pleistocene drumlin near Kingscourt, Ireland. – Sedimentary Geology, 111, 91–105. https://doi.org/10.1016/S0037-0738%2897%2900008-0">https://doi.org/10.1016/S0037-0738(97)00008-0
Müller V. – Čurda J. – Jinochová J. – Majer V. – Manová M. – Sáňka V. – Skácel J. – Skácelová D. – Večeřa J. – Žáček V. (2003): Vysvětlivky k souboru geologických a ekologických účelových map přírodních zdrojů v měřítku 1:50 000. Listy 04-43 Bílý Potok, 04-44 Javorník, 14-21 Travná, 14-22 Jeseník. – 80 s., Česká geologická služba.
Nývlt D. – Engel Z. – Tyráček J. (2011): Pleistocene glaciations of Czechia. – In: Ehlers J. – Gibbard P. L. – Hughes P. D. (eds.): Quaternary Glaciations – Extent and Chronology Part IV – a closer look. Developments in Quaternary Science, 37–46, Elsevier.
Pecina V. – Čurda J. – Hanáček M. – Kočandrle J. – Nývlt D. – Opletal M. – Skácelová D. – Skácelová Z. – Večeřa J. – Žáček V. (2005): Základní geologická mapa České republiky 1 : 25 000 list 14-221 Žulová s Vysvětlivkami. – MS, Česká geologická služba.
Powers M. C. (1953): A new roundness scale for sedimentary particles. – Journal of Sedimentary Petrology, 23, 117–119. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D">https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
Prosová M. (1981): Oscilační zóna kontinentálního ledovce. Jesenická oblast. – Acta Universitatis Carolinae, Geologica, 3, 265–294.
Pouba Z. – Dvořák J. – Kužvart M. – Mísař Z. – Musilová L. – Prosová M. – Röhich P., – Skácel J. – Unzeitig M. (1962): Vysvětlivky k přehledné geologické mapě ČSSR 1 : 200 000, list M - 33 - XVIII Jeseník. – 178 s., Ústřední ústav geologický.
Skácelová D. (1994): Geologická mapa ČR 1 : 50 000. List 04-43 Bílý Potok. – Český geologický ústav.
Stokes Ch. R. – Spagnolo M. – Clark Ch. D. (2011): The composition and internal structure of drumlins: Complexity, commonality, and implications for a unifying theory of their formation. – Earth-Science Reviews, 107, 398–422.
Zieliński T. (1992): Moreny czołowe Polski północno-wschodniej – osady i warunki sedymentacji. – 95 s. Uniwersytet Śląski. Katowice.
Zieliński T. – van Loon A. J. (1999): Subaerial terminoglacial fans I: a semi-quantitative sedimentological analysis of the proximal environment. – Geologie en Mijnbouw, 77, 1–15.
Žáček V. (1995): Geologická mapa ČR 1 : 50 000. List 14-22 Jeseník. – Český geologický ústav. Praha.
Žáček V. – Čurda J. – Kočandrle J. – Nekovařík Č. – Nývlt D. – Pecina V. – Skácelová D. – Skácelová Z. – Večeřa J. (2004): Základní geologická mapa České republiky 1 : 25 000 list 14-222 Vidnava s Vysvětlivkami. – Česká geologická služba. Praha.