The occurrence of listvenite with gersdorffite-cobaltite solid solution in the Dřínová quarry near Tišnov (Moravia)
Vol.31,No.1-2(2024)
Chromian illite-magnesite-dolomite-quartz rock (listvenite-like) containing Ni-Co mineralization was found in the Svratka orthogneisses from the Dřínová quarry. The main rock-forming minerals are Fe-rich magnesite, Fe-rich dolomite, Cr-illite and quartz, less frequently calcite. Accessory minerals include chromite (with 0.841–0.886 apfu Fe2+ and 1.642–1.742 apfu Cr), gersdorffite-cobaltite (Ni0.45-0.92Fe0.01-0.34Co0.01-0.34As0.83-1.02Sb0.00-0.03S1), sulfides (pyrite, sphalerite), and apatite. The illite from the Dřínová quarry contains up to 3 wt. % of Cr2O3. Presence of the Cr-illite, accesory chromite, and Ni-Co sulfoarsenides represents origin from ultrabasic protolith, reflecting transformation to phyllosilicatecarbonate-
quartz listvenite.
gersdorffite; listvenite; cr-illite; carbonates; Dřínová
Ash, C. H., Arksey, R. L. (1990a). The listwanite-lode gold association in British Columbia. – In: Geological Fieldwork 1989, A summary of Field Activities and Current Research, Province of British Columbia, Mineral Resources Division Geological Survey Branch, 359–364.
Ash, C. H., Arksey, R. L. (1990b). The Atlin ultramafic allochthon: ophiolitic basement within the Cache Creek Terrane; tectonic and metallogenic significance (104N/12). A summary of Field Activities and Current Research, Province of British Columbia–Minerdtl Resources Division Geological Survey Branch, 365–374.Arai, S., Akizawa, N. (2014). Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: New behavior of Cr and chromite. American Mineralogist. – 99, 1, pp. 28–34. https://doi.org/10.2138/am.2014.4473
Barnes, S. I. (2000). Chromite in Komatiites, II. Modification during greenschist to mid amphibolite facies metamorphism. – Journal of Petrology, 41, 387–409. https://doi.org/10.1093/petrology/41.3.387
Barnes, S. J., Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. – Journal of Petrology, 42, 12, 2279–2302. https://doi.org/10.1093/petrology/42.12.2279
Belogub, E. V., Melekestseva, I. Y., Novoselov, K. A., Zabotina, M. V., Treťyakov, G. A., Zaykov, V. V., Yuminov, A. M. (2017). Listvenite-related gold deposits of the South Urals (Russia): A review. – Ore Geology Reviews, 85, 247–270. https://doi.org/10.1016/j.oregeorev.2016.11.008
Bozkaya, Ö., Bozkaya, G., Yılmaz, H., Hozatlıoğlu, D., Banks, D. A. (2019). The origin, age and duration of hydrothermal alteration associated with iron skarn mineralization determined from clay/phyllosilicate minerals, Bizmişen-Erzincan, East-Central Turkey. – Ore Geology Reviews, 115, 103–179. https://doi.org/10.1016/j.oregeorev.2019.103179
Buriánek, D. (2010). Metamorfní vývoj metadioritové subzóny v brněnském batolitu. – Acta Musei Moraviae, Scientae geologicae, 95, 2, 133–152 . ISSN 1211-8796.
Colás, V., González-Jiménez, J. M., Griffin, W.L., Fanlo, I., Gervilla, F., O’Reilly, S. Y., Pearson, N. J., Kerestedjian, T., Proenza, J. A. (2014). Fingerprints of metamorphism in chromite: new insights from minor and trace elements. – Chemical Geology, 389, 137–152. https://doi.org/10.1016/j.chemgeo.2014.10.001
Dolníček, Z., Buriánek, D. (1997). Hydrotermální mineralizace v lomu Dřínová u Tišnova. – Acta Musei Moraviae, Scientiae Geologicae, 82, 3–43.
Dolníček, Z. (2000). Mineralogy and genetic conditions of the barite veins from Tišnov. – Geologické výzkumy na Moravě a ve Slezsku v roce 1999, 7, 81–86.
Dolníček, Z. (2004). Mineralogie a podmínky vzniku fluoritových a barytových mineralizací brunovistulika. – MS, Disertační práce, Přírodovědecká fakulta, Masarykova univerzita. Brno.
Evans, B. W., Frost, B. R. (1975). Chrome-spinel in progressive metamorphism. – A preliminary analysis. Geochimica et Cosmochimica Acta, 39, 959–972. https://doi.org/10.1016/0016-7037(75)90041-1
Ferenc, Š., Uher, P., Spišiak J., Šimonová V. (2016): Chromium- and nickel-rich micas and associated minerals in listvenite from the Muránska Zdychava, Slovakia: products of hydrothermal metasomatic transformation of ultrabasic rocks. – Journal of Geosciences, 61, 239–254. https://doi.org/10.3190/jgeosci.217
Gahlan, H. A., Azer, M. K., Asimow, P. D., Al-Kahtany, K. M. (2022). Formation of gold-bearing listvenite in the mantle section of the Neoproterozoic Bir Umq ophiolite, Western Arabian Shield, Saudi Arabia. – Journal of African Earth Sciences., 190, 104517.
Halls, C., Zhao, R., (1995): Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. – Mineralium Deposita, 30, 303–313. https://doi.org/10.1007/BF00196366
Houzar, H., Hršelová, P., (2020): Chromem bohatá minerální asociace spinelu s illitem v křemenné hornině z Radňovsi u Křižanova (gföhlská jednotka, moldanubikum, Český masiv). – Acta Musei Moraviae, Scientiae Geologicae, 105, 1, 65–72.
Hreus, S. (2019). Chromová slída – křemen – dolomitová hornina (listvenit) z Vícenic u Naměště nad Oslavou (gföhlská jednotka, moldanubikum). – Acta Musei Moraviae, Scientiae geologicae, 104, 1, 87–95.
Cháb J., Suk M. (1977). Regionální metamorfóza na území Čech a Moravy – Knihovna ÚÚG, sv. 50, Praha, 156 s.
Jaroš, J., Mísař, Z. (1976). Nomenclature of the tectonic and lithostratigraphic units in the Moravian Svratka Dome (Czechoslovakia). – Věstník Ústředního Ústavu Geologického, 51, 2, 113–122. Praha.
Mederski, S., Wojslaw, M., Pršek, J., Majzlan, J., Kiefer, S., Asllani, B. (2021). A geochemical study of gersdorffite from the Trepça Mineral Belt, Vardar Zone, Kosovo. – Journal of Geosciences, 66, 97–115. https://doi.org/10.3190/jgeosci.322
Melichar, R., Buriánek, D., Kumpan, T., Hrdličková, K., Bárta, F., Skoršepa, M. (2019). Dřínová hill, thrust tectonics modified by subsequent extensional faulting. ceteg 2019 – excursion guide. – In: Hanžl, P., Melichar, R., Janoušek, V. (eds.): Prague: Czech Geological Survey, s. 31–34. ISBN 978-80-7075-956-1.
Morata, D., Higueras, P., Domínguez-Bella, S., Parras, J., Velasco, F., Aparicio, P. (2001). Fuchsite and other Cr- rich phyllosilicates in ultramafic enclaves from the Almadén mercury mining district, Spain. – Clay Minerals, 36, 345–354. https://doi.org/10.1180/000985501750539445
Pouchou, J. L., Pichoir, F., (1985). “PAP” procedure for improved quantitative microanalysis. – Microbeam Analysis, 20, 104–105.
Sack, R. O., Ghiorso, M. S. (1991). Chromian spinels as petrogenetic indicators; thermodynamics and petrological applications. – American Mineralogist, 76(5–6), 827–847.
Spiridonov, E.M. (1991). Listvenites and zodites. – International Geology Review, 33 (4), 397–407. https://doi.org/10.1080/00206819109465698
Soejono, I., Janoušek, V., Žáčková, E., Sláma, J., Konopásek, J., Machek, M., Hanžl, P. (2017). Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U–Pb zircon and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. – International Journal of Earth Sciences (Geol Rundsch) 106, 2109–2129. https://doi.org/10.1007/s00531-016-1416-y
Špaček, P. (2001): Mikrotektonika a stratigrafie paleozoických vápenců jihozápadního okraje brunovistulika. – MS dizertační práce, Ústav geologických věd, Přírodovědecká fakulta, Masarykova univerzita, Brno.
Uher, P., Ferenc, Š., Spišiak, J., (2013). Cr-Ni muskovit v listvenite z Muránskej Zdychavy pri Revúcej (Slovenské rudohorie, stredné Slovensko). – Bull mineral-petrolog Odd Nár Muz (Praha) 21: 62–66.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2024 Pavla Hršelová, Jiří Toman, David Buriánek, Dalibor Všianský