Anthropogenic influence on carbon dioxide in cave during period of limited ventilation (Balcarka Cave, Moravian Karst)

Vol.21,No.1-2(2014)

Abstract
An anthropogenic impact on carbon dioxide (CO2-) concentrations was studied in the Balcarka Cave (Moravian Karst). The variables such as CO2 concentrations, cave/external temperatures, and number of visitors (attendance) were monitored in the Gallery Chamber and exterior with two-minute step during two-day monitoring campaign. For interpretation of the found data, a dynamic model was proposed. Modeling showed that the CO2 levels in the chamber under given conditions were controlled by the different CO2 concentrations in adjacent cave spaces and by the cave airflows driven by difference between the temperatures in cave and exterior, ΔT. The adjacent CO2 concentrations were (3.00–3.30)·10-2 mol m-3 (DAF ventilation mode) and 2.57·10-2 mol m-3 (UAF ventilation mode). There was identified a time shift between switching both the individual ventilation modes: the UAF mode switched over to DAF mode at non-zero temperature difference, ΔT = -2 °C. The overall natural net input of CO2 into the studied chamber was 8·10-5 mol s-1. The anthropogenic CO2 appeared as the peaks superimposed onto the natural CO2 concentrations. The peaks heights correspond to (i) number of visitors and (ii) period of their staying. The overall anthropogenic CO2 flux into the studied chamber varied from 8·10-5 to 3.47·10-3 mol min-1. This flux normalized to person number was 4·10-3 mol min-1.

Keywords:
anthropogenic flux; Balcarka Cave; carbon dioxide; cave airflows; dynamic model
References

Batiot-Guilhe, C. – Seidel, J.-L. – Jourde, H. – Hébrard, O. – Bailly-Comte, V. (2007): Seasonal variations of CO2 and 222Rn in a mediterranean sinkhole – spring (Causse d´Aumelas, SE France). – International Journal of Speleology, 36 (1), 51–56. DOI: http://dx.doi.org/10.5038/1827-806X.36.1.5">10.5038/1827-806X.36.1.5

Bourges, F. – Mangin, A. – d´Hulst, D. (2001): Le gaz carbonique dans la dynamique de l´atmosphére des cavités karstiques: l´exemple de l´Aven d´Orgnac (Ardéche). – Earth and Planetary Science, 333, 685–692 (in French).

Bögli, A. (1978): Karsthydrographie und physische speleologie. – Springer, Berlin. 292 pp.

Buecher, R.H. (1999): Microclimate study of Kartchner Caverns, Arizona. – Journal of Cave and Karst Studies, 61 (2), 108–120.

De Freitas, C. R. – Littlejohn, R. N. – Clarkson, T. S. – Kristament, L. S. (1982): Cave climate: assessment of airflow and ventilation. – Journal of Climatology, 2, 383–397. DOI: http://dx.doi.org/10.1002/joc.3370020408">10.1002/joc.3370020408

Dragovich, D. – Grose, J. (1990): Impact of tourism on carbon dioxide levels at Jenolan Caves, Australia: an examination of microclimatic constraints on tourist cave management. – Geoforum, 21 (1), 111–120. DOI: http://dx.doi.org/10.1016/0016-7185%2890%2990009-U">10.1016/0016-7185(90)90009-U

Faimon, J. – Štelcl, J. – Sas, D. (2006): Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císařská Cave (Moravian Karst, Czech Republic). – Science of the Total Environment, 369, 231–245. DOI: http://dx.doi.org/10.1016/j.scitotenv.2006.04.006">10.1016/j.scitotenv.2006.04.006

Faimon, J. – Ličbinská, M. – Zajíček, P. (2012a): Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. – International Journal of Speleology, 41 (1), 17–28.

Faimon, J. – Troppová, D. – Baldík, V. – Novotný, R. (2012b): Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). – International Journal of Climatology, 32, 599–623. DOI: http://dx.doi.org/10.1002/joc.2298">10.1002/joc.2298

Faimon, J. – Lang, M. (2013): Variances in airflows during different ventilation modes in a dynamic U-shaped cave. – International Journal of Speleology, 42 (2), 115–122. DOI: http://dx.doi.org/10.5038/1827-806X.42.2.3">10.5038/1827-806X.42.2.3

Geiger, R. (1966): The climate near the ground. – Cambridge, MA, Harvard University Press. 628 pp.

Kowalczk, A. J. – Froelich, P. N. (2010): Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do cave breath? – Earth and Planetary Science Letters, 289, 209–219. DOI: http://dx.doi.org/10.1016/j.epsl.2009.11.010">10.1016/j.epsl.2009.11.010

Russell, M.J. – MacLean, V.L. (2008): Management issues in a Tasmanian tourist cave: Potential microclimatics impacts of cave modifications. – Journal of environmental management, 87, 474–483. DOI: http://dx.doi.org/10.1016/j.jenvman.2007.01.012">10.1016/j.jenvman.2007.01.012

Spötl, C. – Fairchild, U. – Tooth, A. F. (2005): Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. – Geochimica et Cosmochimica Acta, 69, 2451–2468. DOI: http://dx.doi.org/10.1016/j.gca.2004.12.009">10.1016/j.gca.2004.12.009

Statistica (2014): StatSoft . Dostupné na http://www.statsoft .com/ [17. 1. 2014]

Metrics

328

Views

124

PDF (Czech) views