Neuspořádaný uhlík v tektonických zónách paleozoických sedimentů (devon moravskoslezského paleozoika)

Vol.28,No.1-2(2021)

Abstract

Dark carbonaceous matter staining tectonic zones and deformed carbonate strata of the Moravo-Silesian Palaeozoic were studied by several methods. Samples were taken from tectonic structures in the quarry in Čebín and in the middle quarry in Mokrá near Brno. The grey-black-coloured rocks are clearly macroscopically and microscopically deformed, show traces of brittle ductile shear deformation and with foliation developed. The dark colour is caused by the presence of black carbon matter, which is documented by methods of optical and electron (BSE) microscopy.

The mineral assemblage has the character of hydrothermal mineralization migrating along tectonic structures. Mineralization consists mainly of quartz, carbonates (calcite, dolomite), phyllosilicates (mica, chlorite, kaolinite), pyrite and it also includes black carbon. Apatite is one of the interesting and unusual components. The content of organic and elemental carbon determined by the thermo-optical method in intensively mineralized zones is around 2.5 mass%.

The carbonaceous matter was more accurately identified using Raman spectra. The spectra at the two studied localities have a very similar shape and are very close to the spectra of black carbon in low-grade carbon coal matter, very disordered carbon and/or amorphous carbon (coal, kerogen). The spectra show the presence of peaks in the D, G and 2D regions and are different from the spectra of ordered and disordered graphite. The presence of a small peak G in the analysed spectra (Lorentzian function) also indicates the possible presence of a small amount of more ordered carbon in the studied black carbon matter.

The components of the black mineralized zones were most likely mobilized from the surrounding rock formations during the Variscan tectono-metamorphic events. The similarity with the spectra of poorly ordered carbon matter from low metamorphic conditions shows transformation temperatures of 150–280 °C, which is in accordance with other thermometric methods in the region of the southern edge of the Moravo-Silesian Palaeozoic.

 


Keywords:
Moravo-Silesian Palaeozoic; carbonate strata; black carbonaceous matter; deformation structures; Raman spectra; disordered carbon; organic matter; temperatures
References

Ádám, A. (2001). Relation of the graphite and fluid bearing conducting dikes to the tectonics and seismicity (Review on the Transdanubian crustal conductivity anomaly). – Earth, Planets and Space, 53, 903–918. https://doi.org/10.1186/BF03351687.

Ammar, M.R., Rouzaud, J.-N. (2012). How to obtain a reliable structural characterization of polished graphitized carbons by Raman microspectroscopy. – Journal of Raman Spectroscopy, 43, 2, 207–211. https://doi.org/10.1002/jrs.3014.

Arapov, J. A., Bojcov, V. J., Česnokov, N. I., Djakonov, A. V., Halbrštát, J., Jakovjenko, M. A., Kolek, M., Komínek, J., Kozyrev, N. V., Kremčukov, A. G., Lažanský, M., Milovanov, A. I., Nový, V., Šorf, F. (1984). Československá ložiska uranu. Nakladatelství technické literatury. Praha. 350 s.

Bábek, O., Tomek, Č., Melichar, R., Kalvoda, J., Otava, J. (2006). Structure of unmetamorphosed Variscan tectonic units of the southern Moravo-Silesian zone, Bohemian Massif: a review. – Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 239, 1, 37–75. http://dx.doi.org/10.1127/njgpa/239/2006/37.

Babůrek, J.(ed.) (2012). Vysvětlivky k základní geologické mapě České republiky 1:25 000, 21-423 Stará Lhota. MS, Česká geologická služba, Praha.

Beyssac, O., Goffé, B., Chopin, C., Rouzaud, J.N. (2002). Raman spectra of carbonaceous material in metasediments: a new geothermometer. – Journal of Metamorphic Geology, 20, 859–871.

Beyssac, O., Rouzaud, J.N., Goffé, B., Brunet, F., Chopin, C. (2002a). Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. – Contributions to Mineralogy and Petrology, 143, 19–31.

Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M., Rouzaud, J.-N., (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. – Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59, 10, 2267–2276. https://doi.org/10.1016/S1386-1425(03)00070-2.

Beyssac, O., Lazzeri, M. (2012). Application of Raman spectroscopy to the study of graphitic carbons in the Earth Sciences. In: J. Dubessy, J., Caumon, M.-C., Rull, F. eds.: Applications of Raman Spectroscopy to Earth Sciences and Cultural Heritage. EMU Notes in Mineralogy, 12, 415–454, European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland. https://doi.org/10.1180/EMU-notes.

Blanche, C., Rouzard, J.N., Dumas, D. (1995). New data on anthracite graphitisibility. Omnibook online, American Carbon Society, 694–695.

Blanche, C., Rouzard, J.N., (1997). Possible role of iron in graphite formation. Omnibook online, American Carbon Society, 696–697.

Bokobza, L., Bruneel, J.-L., Couzi, M. (2015). Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. – C, 1, 77–94. https://doi.org/10.3390/c1010077.

Bosák, P. (1984). Organická hmota v devonských karbonátových horninách na Tišnovsku. – Časopis pro mineralogii a geologii, 29, 1, 41–53. Praha.

Cao, S., Neubauer, F. (2019). Graphitic material in fault zones: Implications for fault strength and carbon cycle, Earth-Science Reviews, 194, 109–124. https://doi.org/10.1016/j.earscirev.2019.05.008.

Cavalazzi, B., Agangi, A., Barbieri, R., Franchi, F., Gasparotto, G. (2014). The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes. – Geology of Ore Deposits, 56, 395–408. https://doi.org/10.1134/S107570151405002X.

Crespo, E., Luque, J., Barrenechea, J., Rodas, M. (2005). Mechanical graphite transport in fault zones and the formation of graphite veins. – Mineralogical Magazine, 69, 4, 463–470. https://doi.org/10.1180/0026461056940266.

Čížek, P., Tomek, Č. (1991). Large scale thin-skinned tectonics in the eastern boundary of the Bohemian Massif. – Tectonics, 10, 273–286.

Ferrari, A. C., Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. – Physical Review B 61, 95–107.

Földvári, M. (2011). Handbook of thermogravimetric system of minerals and its use in geological practice. – Geological Institute of Hungary. Budapest. Vol. 213, 180 p.

Gilíková, H. et al. (2010). Vysvětlivky k základní geologické mapě České republiky 1:25 000, 24-413 Mokrá-Horákov. – MS, Česká geologická služba. Praha.

Hanžl, P., Buriánková, K., Čtyroká, J., Čurda, J., Gilíková, H., Gütlerová, P., Kabátník, P., Kratochvílová, H., Manová, M., Maštera, L., Neudert, O., Otava, J., Petrová, P., Šalamanský, K., Šrámek, J., Švecová, J., Vít, J. (2007). Vysvětlivky k základní geologické mapě České republiky 1:25000, 24-321 Tišnov. Česká geologická služba. Praha.

Hladil, J. (1979). Útesová fauna z devonských vápenců u Malhostic (východní okraj boskovické brázdy). — Věstník Ústředního Ústavu geologického, 54, 3, 179–183. Praha.

Hladil, J. (1987). Základní geologická mapa ČSSR 24-413 Mokrá-Horákov. Česká geologická služba.

Hladil, J. (1991). Násunové struktury v jižním uzávěru Moravského Krasu. Zprávy o geologických výzkumech v roce 1989, 80–81.

Hladil, J., Krejčí, Z., Kalvoda, J.,Winter, M., Galle, A., Berousek, P. (1991). Carbonate ramp environment of Kellwasser time interval (Lesní lom, Moravia, Czechoslovakia). – Bulletin de la Société Belge de Géologie, 100, 1-2, 57–119.

Hladil, J., Melichar, R., Otava, J., Galle, A., Krs, M., Man, O., Pruner, P., Cejchman, P., Orel, P. (1999). The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. In: Feist, R., Talent, J. A., Daurer, A. eds.: North Gondwana Mid-Palaeozoic Terranes, Stratigraphy and Biota, Abhandlungen der Geologischen Bundesanstalt, 54, 27–47.

Chlupáč, I., Brzobohatý, R., Kovanda, J., Stráník, Z. (2002). Geologická minulost České republiky. – Academia. Praha. 436 s.

Jachowicz, M., Přichystal, A. (1997). Nález spodnokambrických sedimentů v hlubokých vrtech na jižní Moravě. – Geologické výzkumy na Moravě a ve Slezsku v r. 1996, 4, 64. Brno.

Jaroš, J., Mísař, Z. (1967). Problém hlubinného zlomu boskovické brázdy. – Sborník geologických Věd, Geologie, 12, 131–147.

Kalvoda, J., Devuyst, F. X., Bábek, O., Dvořák, L., Rak, Š., Rez, J. (2010). High-resolution biostratigraphy of the Tournaisian-Visean (Carboniferous) boundary interval, Mokrá quarry, Czech Republic. – Geobios, 43, 317–331.

Kalvoda, J., Kumpan, T., Holá, M., Bábek, O., Kanický, V., Škoda, R. (2018). Fine-scale LA-ICP-MS study of redox oscillations and REEY cycling during the latest Devonian Hangenberg Crisis (Moravian Karst, Czech Republic). – Palaeogeography, Palaeoclimatology, Palaeoecology, 493, 30–43.

Kouketsu Y., Mizukami T., Mori H., Endo S., Aoya M., Hara H., Nakamura D., Wallis S. (2014). A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. – Island Arc, 23, 33–50.

Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., Goffé, B. (2010). Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). – Terra Nova, 22, 5, 354–360.

Lünsdorf, N.K (2016). Raman spectroscopy of dispersed vitrinite — Methodical aspects and correlation with reflectance. – International Journal of Coal Geology, 153, 75–86.

Marsh, H., Rodríguez-Reinoso, F. (2006). CHAPTER 9 – Production and reference material. In: Activated carbon, 454–508, Elsevier Ltd. https://doi.org/10.1016/B978-0-08-044463-5.X5013-4

Melichar, R. (1995): Tektonický význam boskovické brázdy. – Geologické výzkumy na Moravě a ve Slezsku v roce 1994, 64–66. Brno.

Melichar, R., Roupec, P. (1994). Nové poznatky o geologii brněnského masívu jižně od Černé Hory. – Geologické výzkumy na Moravě a ve Slezsku v roce 1993, 90–91. Brno.

Merlen, A., Buijnsters, J.G., Pardanaud, C. (2017). A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: from graphene to amorphous carbons. – Coatings, 7, 153. https://doi.org/10.3390/coatings7100153.

Nemanich, R. J., Solin, S. A. (1979). First- and secondorder Raman scattering from finite-size crystals of graphite. – Physical Review B 20, 392–401.

Nover, G., Stoll, J.B., von der Gönna, J. (2005). Promotion of graphite formation by tectonic stress – a laboratory experiment. – Geophysical Journal International, 160, 3, 1059–1067. https://doi.org/10.1111/j.1365-246X.2005.02395.x.

Ohfuji, H., Rickard, D. (2005). Experimental syntheses of framboids — a review. – Earth-Science Reviews, 71, 147–170.

Otava, J. (2000). Paleokrasové výplně typu rudických vrstev na Čebínce a na Květnici. – Geologické výzkumy na Moravě a ve Slezsku v roce 1999, 7, 72–73.

Pasteris, J. D., Wopenka, B. (1991). Raman spectra of graphite as indicates of degree of metamorphism. – Canadian Mineralogist, 29, 1–9.

Popa, R., Kinkle, B.K, Badescu, A. (2004). Pyrite framboids as biomarkers for iron-sulfur systems. – Geomicrobiology Journal, 21, 193–206. https://doi.org/10.1080/01490450490275497.

Rajlich, P. (1990). Strain and tectonic styles related to Variscan transpression and transtension in the Moravo-Silesian Culmian basin, Bohemian Massif, Czechoslovakia. – Tectonophysics, 174, 3-4, 351–367.

Reich, S., Thomsen, C. (2004). Raman spectroscopy of graphite. – Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362, 2271–2288. https://doi.org/10.1098/rsta.2004.1454.

Rez, J., Melichar, R, Kalvoda, J. (2011). Polyphase deformation of the Variscan accretionary wedge: an example from the southern part of the Moravian Karst (Bohemian Massif, Czech Republic). – In: Poblet, J., Lisle, R. J. (eds): Kinematic Evolution and Structural Styles of Fold-and-Thrust Belts, Geological Society, London, Special Publications, 349, 223–235. https://doi.org/10.1144/SP349.12.

Roth Z. (1981): Spodní kambrium na Moravě? – Časopis pro mineralogii a geologii, 1, 26, 1–6. Praha.

Salver-Disma, F., Tarascon, J.M., Clinard, C., Rouzaud, J.N. (1999). Transmission electron microscopy studies on carbon materials prepared by mechanical milling. – Carbon, 37, 1941–1959.

Schuepfer, D.B., Badaczewski, F., Guerra-Castro, J.M., Hofmann, D.M., Heiliger, C., Smarsly, B., Klar, P.J. (2020). Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. – Carbon, 161, 359–372. https://doi.org/10.1016/j.carbon.2019.12.094.

Schulmann, K., Ledru, P., Autran, A., Melka, R., Lardeaux, J. M., Urban, M., Lobkowicz, M. (1991). Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. – Geologische Rundschau, 80, 73–92.

Slobodník, M., Hurai, V., Čopjaková, R. (2008). Variská syntektonická fluida generovaná z paleozoických sedimentů Moravského krasu a Drahanské vrchoviny. – Acta Musei Moraviae, Scientiae Geologicae, 93, 113–126.

Suchý, V., Sýkorová, I., Dobeš, P., Machovič, V., Filip, J., Zeman, A., Stejskal, M. (2012). Blackened bioclasts and bituminous impregnations in the Koněprusy Limestone (Lower Devonian), the Barrandian area, Czech Republic: implications for basin analysis. – Facies, 58, 759–777. https://doi.org/10.1007/s10347-011-0292-y.

Špaček, P. (2001): Mikrotektonika a stratigrafie paleozoických vápenců jihozápadního okraje brunovistulika. — MS, disertační práce. Přírodovědecká fakulta Masarykovy univerzity, Brno.

Špaček, P., Kalvoda, J., Hladil, J., Melichar, R. (2002). Stratigraphic reconstruction of tectonically disturbed carbonate sequences along the western margin of the Brno batholith: a need of multidisciplinary approach. – Bulletin of the Czech Geological Survey, 77, 3, 201–215.

Ulyanova, E.V., Molchanov, A.N., Prokhorov, I.Y., Grinyov, V.G. (2014). Fine structure of Raman spectra in coals of different rank. – International Journal of Coal Geology, 121, 37–43.

Wopenka, B., Pasteris, J. D. (1993). Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. – American Mineralogist, 78, 533–57.

Zapletal, K. (1922). Vyvřelina brněnská. Příroda, 15, 193–199.

Zerda, T. W., John, A., Chmura K. (1981). Raman studies of coals. – Fuel, 60, 5, 375–378. https://doi.org/10.1016/0016-2361(81)90272-6.

Metrics

0

Crossref logo

0


166

Views

126

PDF (Čeština) views

67

XML - appendix (Čeština) views

26

HTML (Čeština) views