Fluid inclusions and chemical composition of analcimes from Řepiště site (Outer Western Carpathians)

Vol.20,No.1-2(2013)

Abstract
Studied locality is situated in western part of the Silesian Unit of the Outer Western Carpathians. Analcime was found in magmatic rock of the teschenite association which was subject of extensive analcimization. Th e analcime crystals, filling the veins and cavities (amygdules, miaroles), have a size up to 5 mm and composite structure: a milky white core shows irregular shape, up to 1 mm in size, and a vitreous transparent rim showing euhedral crystals. The vitreous transparent analcime from veins forms either euhedral crystals or white-pink spherulitic aggregates (size up to 5 mm). Their composition is not close to stoichiometry, with the SiO2/Al2O3 mole ratios from 2.08 to 3.12. Increasing SiO2/Al2O3 molar ratios of analcimes are consistent with decreasing crystallization temperatures. Analcime contains abundant primary fluid inclusions, less secondary fluid inclusions. Fluid inclusions are one-phase (L-only) or two-phase (L+V) with essentially constant liquid-vapour ratios (gaseous phase takes ca. 10 vol. %). The homogenization temperatures of two-phase inclusions range between 122 and 180 °C (analcime from veins) and between 219 and 295 °C (analcime from cavities - amygdules, miaroles). Inclusions freeze at temperatures of -38 to -49 °C. The last ice melts at temperatures between -0.6 and -3.7 °C. The eutectic temperature was not possible to measure due to the small size of the inclusions. The hydrothermal analcime formed from fluids causing the pervasive post-magmatic hydrothermal alteration of the host magmatic rock. The parent fluids were low-salinity (0.7 to 3.2 wt. % NaCl equiv.) aqueous solutions that were progressively cooled during mineral precipitation. This mineral phase represents a transitional stage between the high-temperature and low-temperature stages of post-magmatic hydrothermal activity in the study area.

Keywords:
Silesian Unit; analcime; chemical composition; fluid inclusions; teschenite
References

Anders, E. – Grevesse, N. (1989): Abundances of the elements: meteoritic and solar. – Geochimica et Cosmochimica Acta, 53, 197–214. DOI: http://dx.doi.org/10.1016/0016-7037%2889%2990286-X">10.1016/0016-7037(89)90286-X

Bau, M. (1991): Rare-earth element mobility during hydrothermal and metamorphic fl uid-rock interaction and the signifi cance of the oxidation state of europium. – Chemical Geology, 93, 219–230. DOI: http://dx.doi.org/10.1016/0009-2541%2891%2990115-8">10.1016/0009-2541(91)90115-8

Bodnar, R. J. (1993): Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. – Geochimica et Cosmochimica Acta 57, 683–684. DOI: http://dx.doi.org/10.1016/0016-7037%2893%2990378-A">10.1016/0016-7037(93)90378-A

Buriánek, D. – Bubík, M. (2012): Horniny těšínitové asociace v okolí Valašského Meziříčí. – Acta Musei Moraviae, Scientia Geologicae, 1, 89–111.

Dolníček, Z. – Kropáč, K. – Uher, P. – Polách, M. (2010a): Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Tichá, Outer Western Carpathians, Czech Republic. – Chemie der Erde, 70, 267–282. DOI: http://dx.doi.org/10.1016/j.chemer.2010.03.003">10.1016/j.chemer.2010.03.003

Dolníček, Z. – Urubek, T. – Kropáč, K. (2010b): Post-magmatic hydrothermal mineralization associated with Cretaceous pyrite, Outer Western Carpathians, Czech Republic: interaction between host rock and externally derived fl uid. – Geologica Carpathica, 4, 327–339.

Dolníček, Z. – Urubek, T. – Kropáč, K. – Lehotský, T. (2012): Molybdenit z mandlovcového těšínitu z Řepiště u Paskova. – Minerál, 20, 6, 495–497.

Dostal, J. – Owen, J. V. (1998): Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. – Geologische Rundschau 87, 67–77. DOI: http://dx.doi.org/10.1007/s005310050190">10.1007/s005310050190

Fall, A. – Bodnar, R. J. – Szabó, Cs., Pál-Molnár, E. (2007): Fluid evolution in the nepheline syenites of the Ditrău Alkaline Massif, Transylvania, Romania. – Lithos 95, 331–345. DOI: http://dx.doi.org/10.1016/j.lithos.2006.08.005">10.1016/j.lithos.2006.08.005

Ferguson, L. J. – Edgar, A. D. (1978): The petrogenesis and origin of the analcime in the volcanic rocks of the Crowsnest Formation, Alberta. – Canadian Journal of Earth Sciences, 15, 1, 69–77. DOI: http://dx.doi.org/10.1139/e78-006">10.1139/e78-006

Gibb, F. G. F. – Henderson, C. M. B. (1978): The petrology of the Dippin sill, Isle of Arran. – Scottish Journal of Geology, 14, 1–27. DOI: http://dx.doi.org/10.1144/sjg14010001">10.1144/sjg14010001

Hovorka, D. – Spišiak, J. (1988): Vulkanizmus mezozoika Západných Karpát. – Slovenská akadémia vied. Bratislava.

Karlsson H. R. – Clayton, R. N. (1991) Analcime phenocrysts in igneous rocks: primary or secondary? – American Mineralogist, 76, 189–199.

Mandour, M. A. (1982): Geochemická a mineralogická studie hornin těšínitové asociace v podbeskydské oblasti ČSSR. – MS, diplomová práce, HGF VŠB. Ostrava.

Matýsek, D. (1993): Kontaktní metamorfóza spojená s intruzí hornin těšínitové asociace na lokalitě Krmelín. – Acta Musei Moraviae, Scientia Naturale, 77, 29–39.

Pauliš, P. (2005): Nejzajímavější mineralogické lokality Moravy a Slezska II. – Kuttna, Kutná hora, 128–129 pp.

Pearce, T. H. (1993): Analcime phenocrysts in igneous rocks; primary or secondary? – discussion. – American Mineralogist, 78, 1–2, 225–229.

Šmíd, B. (1962): Přehled geologie a petrografie hornin těšínitové asociace na severním úpatí Beskyd. – Geologické práce, 63. Bratislava.

Trundová, A. (2004): Petrologie těšínitů z vybraných lokalit v Moravskoslezských Beskydech. – MS, diplomová práce, PřF MU Brno.

Toman, J. (2009): Železo v přírodních zeolitech. – MS, bakalářská práce, PřF MU Brno.

Wlodyka, R. – Kozlowski, A. (1997): Fluid inclusions in hydrothermal analcimes from the rocks of the Cieszyn magma province (Poland). – ECROFI XIV Symp., 350–351.

Wlodyka, R. – Karwowski, L. (2006): Perovskite from the Międzyrzecze sill near Bielsko-Biała in the Polish Carpathians (the type area of the teschenite association). – Archiwum Mineralogiczne, 53, 1–2, 109–131.

Metrics

407

Views

210

PDF (Czech) views