Migrace alkalických kovů ve zvětralinových profilech migmatitů ze svrateckého krystalinika a moldanubika

Vol.27,No.1-2(2020)

Abstract
The purpose of this study was to characterize four soil profiles derived from migmatites were studied in the Moldanubicum and Svratka Crystalline Unit (eastern part of the Czech Republic). Both physical and chemical weathering biotite to muscovite-biotite migmatites produces 100 to 80 cm thick soil profiles. The silt (43–88 %) was the dominant fraction in all of the studied soil profiles. The weathering process studied migmatites start with biotite replaced to chlorite and continue decomposition plagioclase to the kaolinite. On the other hand, K-feldspar is less affected by secondary alterations and quartz is stable. Based on the study of the behavior of selected alkali metals we can interpret the mechanism of the formation of weathering profiles. The highest degree of the weathering indicates soil profile from the locality Rovné characterized by decreased content of K, Na, and Rb upwards from the parent rock to the A-horizon. The soil profiles from the localities Lipník and Zubří shows a higher proportion of sand fraction and lower WIP (> 50) in comparison to Rovné. Vertical distribution of alkali metals in the soil profile from the locality Štěpánovice indicates that soil profile has been modified by secondary slope movements

Keywords:
migmatite; alkali metals; weathering; Svratka Crystalline Unit; Moldanubicum
References

Biondinob, D., Borrellia, L., Critellib, S., Mutob, F., Apollarob, C., Conigliob, S., Tripodib, V., Perrib, F. (2020). A multidisciplinary approach to investigate weathering processes affecting gneissic rocks (Calabria, southern Italy). – Catena, 187. https://doi.org/10.1016/j.catena.2019.104372

Schulmann, K., Kröner, A., Hegner, E., Wendt, I., Konopásek, J., Lexa, O. a Štípská, P., 2005. Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. – American Journal of Science. 305(5), 407–448. https://doi.org/10.2475/ajs.305.5.407

Demek, J., Mackovčin, P., Balatka, B., Buček, A., Cibulková, P., Culek, M., Čermák, P., Dobiáš D., Havlíček, M., Hrádek M., Kirchner, K., Lacina J., Pánek, T., Slavík, P., Vašátko, J. (2006). Hory a nížiny. Zeměpisný lexikon ČR. 2 upravené vydání.– Brno: MŽP ČR, 2006. 582 s. ISBN 80-86064-99-9.

Folk, R.L., Ward, W.C. (1957). A Study in the Significance of Grain-Size Parameters. – Journal of Sedimentary Petrology, 27, 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Gobat, J. M., Arango, M., Willy, M. (2004). The Living Soil - Fundamentals of Soil Science and Soil Biology. – Enfield : Science Publishers Inc. Plymouth.

Kříbek, B., Leichmann, J., René, M., Holeczy, D. (2005). Přehled geologické stavby strážeckého moldanubika. – In Kříbek, B. Hájek, A. (eds.) Uranové ložisko Rožná, Model pozdně variských a povariských mineralizací, 8–10. Česká geologická služba. Praha

Merlet, C. (1994). An accurate Computer Correction Program for Quantitative Electron Probe Micro-analyses. – Microchimica Acta, 114/115: 363–376. https://doi.org/10.1007/BF01244563

Mísař, Z., Dudek, A., Havlena, V., Weiss, J. (1983). Regionální geologie ČSSR I. Český masiv. – SPN. Praha.

Nesbitt, H.W., Markovics, G., Price, R.C. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. – Geochim. Cosmochim. Acta 44, 1659–1666. https://doi.org/10.1016/0016-7037(80)90218-5

Parker, A. (1970). An index of weathering for silicate rocks. – Geological Magazine 107: 501–504. https://doi.org/10.1017/S0016756800058581

Pertoldová, J., Verner, K., Vrána, S., Buriánek, D., Štědrá, V., Vondrovic, L. (2010). Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. – Journal of Geosciences, 55: 4, 299–319. https://doi.org/10.3190/jgeosci.083

Price, J.R., Velbel M.A. (2003). Chemical weathering indices applied to weathering profiles

developed on heterogenous felsic metamorfic parent rocks. – Chemical Geology, 397– 416.

Righi, D., Meunier, A. (1995). Origin of clays by rock weathering and soil formation.– In B. Velde, ed., Origin and Mineralogy of Clays. – Berlin, Germany, Springer-Verlag, 43–161.

Wang, G.R., Yang, H.Y., Liu, Y.Y., Tong, L.L., Auwalu, A. (2019). The Alteration Mechanism of Copper-bearing Biotite and Leachable Property of Copper-bearing Minerals in Mulyashy Copper Mine, Zambia. – Scientific Reports. 2019 Oct;9(1):15040. https://doi.org/10.1038/s41598-019-50519-z

White, A.F., Brantley, S. L. (1995). Chemical weathering rates of silicate minerals in soils. – Reviews in Mineralogy and Geochemistry, 31, 407–462. https://doi.org/10.1515/9781501509650-011

Wronkiewicz, D.J., Condie, K.C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. – Geochimica et Cosmochimica Acta, 53, 1537–1549. https://doi.org/10.1016/0016-7037(89)90236-6

Müller, P. (2005): Závěrečná zpráva za projekt VaV/630/4/02 Výzkum sedimentů přehrad, nádrží a jezer - zhodnocení rizik a návrhy opatření. – MS MŽP, ČGS.

Plíšek, A. a Štěpánek, P. (1999). Geologická mapa ČR 1:50 000 List 23 - 44 Moravské Budějovice. – Ústř. úst. geol. Praha.

Stárková, I. (1996). Geologická mapa ČR 1:50 000 list 24 - 11 Nové Město na Moravě [1 : 50 000]. – Ústř. úst. geol. Praha.

Zhao, T., Crosta, G. (2018). On the dynamic fragmentation and lubrication of coseismic landslides. – Journal of Geophysical Research: Solid Earth, 123, 9914– 9932. https://doi.org/10.1029/2018JB016378

Metrics

0

Crossref logo

545

Views

200

PDF (Czech) views

123

HTML (Czech) views