P-wave arrival time residuals from the 2017 North Korean nuclear test and its contribution to the problems of lithospheric inhomogeneities in the Central Europe

Vol.26,No.1-2(2019)

Abstract
Lateral inhomogeneities of the Earth‘s interior (crust and mantle) have signifi cant influence on the arrival time of seismic signal detected by station in framework of seismic monitoring. Observed arrival times differ from values presumed on the basis of a homogeneous global velocity model, these differences are quantified by the arrival time residuals Tr . In this article, the effect of lateral inhomogeneities in Central Europe on detected P wave arrival times is demonstrated using seismic signal of the North Korean nuclear test (2017). Magnitude mb of this explosion exceeded value 6 and this seismic event is extraordinarily appropriate for study of time residuals for its sharp beginning and high amplitude of its P wave signal. The arrival times are picked with high accuracy (less than 0.2 s) even in teleseismic epicentral distances, consequently the obtained time residuals more reliably reflect effects of velocity inhomogeneities in comparison to other seismic events. For the study of arrival time residuals in Central Europe, waveforms recorded by several hundreds of seismic stations were evaluated. Final picture of the time residuals distribution shows several regions with anomalous values of Tr , the western and northern regions of the Western Carpathians, the Pannonian Basin and the Eastern Alps are briefly discussed with regard to their possible origins. Given seismic monitoring in Central Europe (above all on the territory of the Czech Republic), signifi cantly anomalous P wave arrival time residuals (exceeding value of 1 second) in the western part of the Western Carpathians are very important.

Keywords:
seismic monitoring; nuclear explosion; time residuals; lithospheric inhomogeneities
References

Amaru, M. (2007). Global travel time tomography with 3-D reference models. – MS, PhD. Thesis. Faculty of Geosciences, Utrecht University.

Asch, K. (2005). The 1 : 5 Million International Geological Map of Europe and Adjacent Areas. – BGR. Hannover.

Behm, M. (2009). 3-D modelling of the crustal S-wave velocity structure from active source data: application to the Eastern Alps and the Bohemian Massif. – Geophysical Journal International, 179, 265–278. https://doi.org/10.1111/j.1365-246X.2009.04259.x

Behm, M., Brückl, E., Mitterbauer, U. (2007). A New Seismic Model of the Eastern Alps and its Relevance for Geodesy and Geodynamics. – VGI Österrreichische Zeitschrift für Vermessung & Geoinformation, 2, 121–133.

Brückl, E., Bleibinhaus, F., Gosar, A., Grad M., Guterch, A., Hrubcová, P., Keller, G. R., Majdański, M., Šumanovac F., Tiira, T., Yliniemi, J., Hegedüs, E., Thybo, H. (2007). Crustal structure due to collisional and escape tectonics ine the Eastern Alps region based on profiles Alp01 add Alp02 from the ALP 2002 seismic experiment. – Journal of Geophysical Research, 112, B06308.

Cassinis, R. (2006). Reviewing pre-TRANSALP DSS models. – Tectonophysics, 414, 79–86. https://doi.org/10.1016/j.tecto.2005.10.026

Gaebler, P., Ceranna, L., Nooshiri, N., Barth, A., Cesca, S., Frei M., Grünberg, I., Hartmann, G., Koch, K., Pilger, Ch., Ross, J. O., Dahm, T. (2019). A multi-technology analysis of the 2017 North Korean nuclear test. – Solid Earth, 10, 59–78. https://doi.org/10.5194/se-10-59-2019

Godová, D., Bielik, M., Šimonová, B. (2018). The deepest Moho in the Western Carpathians and its respective crustal density model (CEL12 section). – Contributions to Geophysics and Geodesy, 48, 3, 255–269. https://doi.org/10.2478/congeo-2018-0011

Grad, M., Guterch, A., Mazur, S., Keller, G. R., Špičák, A., Hrubcová, P., Geissler, W. H. (2008). Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on profile S01 from the SUDETES 2003 experiment. – Journal of Geophysical Research, 113, B10304. https://doi.org/10.1029/2007JB005497

Grad, M., Brückl, E., Majdański, M., Behm, M., Guterch, A., CELEBRATION 2000 and ALP 2002 Working Groups (2009). Crustal structure of the Eastern Alps and their foreland: seismic model beneath the CEL10/Alp04 profile and tectonic implications. – Geophysical Journal International, 177, 279–295. https://doi.org/10.1111/j.1365-246X.2008.04074.x

Hrubcová, P., Środa, P., CELEBRATION 2000 Working Group (2008): Crustal structure at the easternmost termination of the Variscan belt based on CELEBRATION 2000 and ALP 2002 data. – Tectonophysics, 460, 55–75. https://doi.org/10.1016/j.tecto.2008.07.009

Hrubcová, P., Środa, P., Grad, M., Geissler, W. H., Guterch, A., Vozár, J., Hegedüs, E., Sudetes 2003 Working Group (2010). From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. – Geophysical Journal International, 183, 611–633. https://doi.org/10.1111/j.1365-246X.2010.04766.x

Janik, T., Grad, M., Guterch, A., Vozár, J., Bielik, M., Vozárová, A., Hegedüs, E., Kovács, C. A., Kovács, I., Keller, G. R., CELEBRATION 2000 Working Group (2011). Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications. – Journal of Geodynamics, 52, 2, 97–113. https://doi.org/10.1016/j.jog.2010.12.002

Kahánková, L. (2012). Ověření hypotetického vlivu rychlostní anomálie v podloží stanice JAVC (Velká Javorina) na časy příchodů seismických vln. – MS, bakalářská práce. Masarykova univerzita Brno.

Karousová, H., Plomerová, J., Babuška, V. (2013). Upper-mantle structure beneath the southern Bohemian Massif and its surroundings imaged by high-resolution tomography. – Geophysical Journal International, 194, 2, 1203–1215. https://doi.org/10.1093/gji/ggt159

Kennett, B. L. N. (1991). IASPEI 1991 Seismological Tables. – Researcher School of Earth Sciences, Australian National University. Kind, R., Handy, M. R., Yuan, X., Meier, T., Kämpf, H., Soomro, R. (2017). Detection of a new sub-lithospheric discontinuity in Central Europe with S-receiver functions. – Tectonophysics, 700–701, 19–31. https://doi.org/10.1016/j.tecto.2017.02.002

Koulakov, I., Kaban, M. K., Tesauro, M., Cloetingh, S. (2009). P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. – Geophysical Journal International, 179, 345–366. https://doi.org/10.1111/j.1365-246X.2009.04279.x

Legendre, C. P., Meier, T., Lebedev, S., Friederich, W., Viereck-Götte, L. (2012). A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. – Geophysical Journal International, 191, 282–304. https://doi.org/10.1111/j.1365-246X.2012.05613.x

Ren, Y., Grecu, B., Stuart, G., Houseman, G., Hegedüs, E., South Carpathian Project Working Group (2013): Crustal structure of the Carpathian-Pannonian region from ambient noise tomography. – Geophysical Journal International, 195, 1351–1369. https://doi.org/10.1093/gji/ggt316

Stráník, Z., Dvořák, J., Krejčí, O., Müller, P., Přichystal, A., Suk, M., Tomek, Č. (1993). The Contact of the North European Epivariscan Platform with the West Carpathians. – Journal of the Czech Geological Society, 38, 1–2, 21–29.

Wang, T., Shi, Q., Nikkhoo, M., Wei, S., Barbot, S., Dreger, D., Bürgmann, R., Motagh, M., Chen, Q. F. (2018). The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test. – Science, 361(6398), 166–170. https://doi.org/10.1126/science.aar7230

Metrics

0

Crossref logo

0


299

Views

109

HTML (Čeština) views

150

PDF (Čeština) views