PROSTOROVĚ ČASOVÁ DISTRIBUCE KONCENTRACÍ CO2 V PŮDĚ KRASOVÉHO ZÁVRTU A JEHO OKOLÍ (HARBEŠSKÁ PLOŠINA; MORAVSKÝ KRAS)

Roč.21,č.1-2(2014)

Abstrakt

Soil CO2 is an important part of the global carbon cycle. In karst, it controls fundamental processes as limestone dissolution and calcite speleothem growth. A spatiotemporal distribution of soil CO2 concentrations was studied at the site of Společňák sinkhole and its close vicinity (Harbechy Plateau, Moravian Karst). The aim of the study was testing an effect of subterranean ventilation of the CO2 concentrations in soil profile. At this site, 25 soil boreholes were drilled: each 2 cm in diameter and 60 cm deep. A central drill-hole was situated at the bottom of the sinkhole. Six identical drill-holes, six meters of each other, were in the direction of NE, SW, NW, and SE. As result, 3 drill-holes were placed in sinkhole body and 3 drill-holes outside in the field in every direction. CO2 concentrations were measured directly in the atmosphere of soil drill-holes at a depth of about 10 cm below the surface. Soils were identified as haplic Luvisols. The found CO2 concentrations varied spatially and temporally between 1 188 ppmv and 6 039 ppmv. Statistical analysis showed that the differences between CO2 concentrations in sinkhole and its vicinity are not significant at α = 0.05. The only exception from these results seems to be inconclusive. The differences between the sinkhole CO2 concentrations in summer and winter were found also insignificant. Therefore, we have concluded that the study did not confirm any impact of subterranean ventilation on soil CO2. However, for a definitive confirmation or rejection of the hypotheses about subterranean ventilation, it is needed more comprehensive survey under tighter spatial and temporal sampling at multiple locations.


Klíčová slova:
Sinkhole; Společňák; Harbechy Plateau; CO2 concentration
Reference

Albanito, F. – Saunders, M. – Jones, M. B. (2009): Automated diffusion chambers to monitor diurnal and seasonal dynamics of the soil CO2 concentration profile. – European Journal of Soil Science, 60, 507–514. DOI: 10.1111/j.1365-2389.2009.01154.x

AOPK (2008): Půdní mapy ČR v měřítku 1:50 000. Listy: 24-23 Protivanov, 24-32 Brno a 24-41 Vyškov.

Atkinson, T. (1977): Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones. – Journal of Hydrogeology, 35, 111–123. DOI: 10.1016/0022-1694(77)90080-4

Batiot-Guilhe, Ch. – Seidel, J-L. – Hervé, J. – Hébrard, O. – Bailly-Comte, V. (2007): Seasonal variations of CO2 and 222Rn in a mediterranean sinkhole – spring (Causse d’Aumelas, SE France). – International Journal of Speleology, 36, 51–56. DOI: 10.5038/1827-806X.36.1.5

Benavente, J. – Vadillo, I. – Carrasco, F. – Soler, A. – Lián, C. – Moral, F. (2010): Air carbon dioxide contents in the vadose zone of a Mediterranean karst. – Vadose Zone Journal, 9, 126–136. DOI: 10.2136/vzj2009.0027

Blecha, M. – Faimon, J. (2013): Stratifikace CO2 v půdním vzduchu (Moravský kras). – Geologické výzkumy na Moravě a ve Slezsku, ročník 20, 1–2, 167–169.

Bourges, F. – Mangin, A. - d´Hulst, D. (2001): Le gaz carbonique dans la dynamique de l´atmosfere des cavites karstiques: l´exemple de l´Aven d´Orgnac (Ardeche). – Earth and Planetary Sciences, 333, 685–692.

Cuezva, S. – Fernandez-Cortez, A. – Benavente, D. – Serrano-Ortiz, P. – Kowalski, A. S. – Sanchez-Moral, S. (2011): Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer. – Atmospheric Environment, 45, 1418–1427. DOI: 10.1016/j.atmosenv.2010.12.023

Dupač, V. – Hušková, M. (2009): Pravděpodobnost a matematická statistika. – Karlova Univerzita, Karolinum, Praha.

Dürr, H. H. – Meybeck, M. – Dürr, S. H. (2005): Lithologic composition of the Earth‘s continental surfaces derived from a new digital map emphasizing riverine material transfer. – Global Biogeochemical Cycles, 19, DOI: 10.1029/2005GB002515.

Emmerich, W. E. (2003): Carbon dioxide fluxes in a semiarid environment with high carbonate soils. – Agricultural and Forest Meteorology, 116, 91–102. DOI: 10.1016/S0168-1923(02)00231-9

Faimon, J. – Štelcl, J. – Zimák, J. – Slavík, P. (2000): Dynamika skapových vod (Císařská jeskyně, Moravský kras). – Geologické výzkumy na Moravě a ve Slezsku, ročník 7, 147–149.

Faimon, J. – Štelcl, J. – Schwarzová, M. – Zajíček, P. – Zimák, J. (2006): Recentní krasové procesy: destrukce speleotém. – Závěrečná zpráva GAČR 205/03/1128, 1–47.

Faimon, J – Ličbinská, M. (2010): Carbon dioxide in the soils and adjacent caves of the Moravian Karst. – Acta Carsologica, 39/3, 463–475.

Faimon, J – Ličbinská, M. – Zajíček, P. (2012a): Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. – International Journal of Speleology, 41, 17–28.

Faimon, J – Ličbinská, M. – Zajíček, P. – Šráček, O. (2012b): Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic. – Acta Carsologica, 41/1, 47–57.

Faimon, J. – Troppová, D. – Baldík, V. – Novotný, R. (2012c): Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). – International Journal of Climatology, 32, 599–623. DOI: 10.1002/joc.2298

Faimon, J. – Lang, M. (2013): Variances in airflows during different ventilation modes in a dynamic U-shaped cave. – International Journal of Speleology, 2, 115–122. DOI: 10.5038/1827-806X.42.2.3

Fairchild, I. J. – Borsato, A. – Tooth, A. F. – Frisia, S. – Hawkesworth, C. J. – Huang, Y. – McDermott, F. – Spiro, B. (2000): Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. – Chemical Geology, 166, 255–269. DOI: 10.1016/S0009-2541(99)00216-8

Fairchild, I. J. – Frisia, S. – Borsato, A. – Tooth, A. F. (2006): Speleothems. – In: Nash, D. J. – McLaren, S. J (eds): Geochemical Sediments and Landscapes, Blackwells, Oxford.

Ford, D. – Williams, P. (2007): Karst Hydrogeology and Geomorfology. – Wiley; Revised edition.

Jassal, R. – Black, A. – Novak, M. – Morgenstern, K. – Nesic, Z. – Gaumont-Guay, D. (2005): Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. – Agricultural and Forest Meteorology, 130, 176–192. DOI: 10.1016/j.agrformet.2005.03.005

Kowalski, A. S. – Serrano-Ortiz, P. – Janssens, I. A. – Sanchez-Moral, S. – Cuezva, S. – Domingo, F. – Were, A. – Alados-Arboledas, L. (2008): Can flux tower research neglect geochemical CO2 exchange? – Agricultural and Forest Meteorology, 148, 1045–1054.

Kuzyakov, Y. (2006): Sources of CO2 efflux from soil and review of partitioning methods. – Soil Biology & Biochemistry, 38, 425–448. DOI: 10.1016/j.soilbio.2005.08.020

Kuzyakov, Y. – Gavrichkova, O. (2010): Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. – Global Change Biology, 16, 3386–3406. DOI: 10.1111/j.1365-2486.2010.02179.x

Musil, R. et al. (1993): Moravský kras – labyrinty poznání. – GEO program. Adamov.

Nakadai, T. – Yokozawa, M. – Ikeda, H. – Koizumi, H. (2002): Diurnal changes of carbon dioxide flux from bare soil in a agricultural field in Japan. – Applied Soil Ecology, 19, 161–171. DOI: 10.1016/S0929-1393(01)00180-9

Němeček, J. et al. (1967): Komplexní průzkum zemědělských půd ČSSR. Průvodní zpráva okresu Blansko. – VÚMOP Praha. Brno.

Němeček, J. et al. (2011): Taxonomický klasifikační systém půd České republiky. 2 upravené vydání. – ČZU, Praha.

Plestenjak, G. – Eler, K. – Vodnik, D. – Ferlan, M. – Čater, M. – Kanduč, T. – Simončič, P. – Ogrinc, N. (2012): Sources of soil CO2 in calcareous grassland with woody plant encroachment. – Journal of Soil Sediments, 12, 1327–1338. DOI: 10.1007/s11368-012-0564-3

Ridgwell, A. – Zeebe, R. E. (2005): The role of the global carbonate cycle in the regulation and evolution of the Earth system. – Earth and Planetary Science Letters, 234, 299-315. DOI: 10.1016/j.epsl.2005.03.006

Ronald, M. – Serrano-Ortiz, P. – Kowalski, A. S. – Goddéris, Y. – Sánchez-Canete, E. P. – Ciais, P. – Domingo, F. – Cuezva, S. – Sanchez-Moral, S. – Longdoz, B. – Yakir, D. – Van Grieken, R. – Schott, J. – Cardell, C. – Janssens, I. A. (2013): Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry. – Biogeosciences, 10, 5009–5017. DOI: 10.5194/bg-10-5009-2013

Sánches-Canete, E. P. – Serrano-Ortiz, P. – Kowalski, A. S. – Oyonarte, C. – Domingo, F. (2011): Subterranean CO2 ventilation and its role in the net ecosystem carbon balance of a karstic shrubland. – Geophysical research letters, 38, L09802, DOI: 10.1029/2011GL047077.

Sarbu, S. M. – Lascu, C. (1997): Condensation corrosion in Movile cave, Romania. – Journal of Cave and Karst Studies, 59, 99–102.

Serrano-Ortiz, P. – Domingo, F. – Cazorla, A. – Were, A. – Cuezva, S. – Villagarcía, L. – Alados-Arboledas, L. – Kowalski, A. S. (2009): Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate. – Journal of Geophysical Research, 114, G04015, DOI: 10.1029/2009JG000983

Schlesinger, W. H. – Andrews, J. A. (2000): Soil respiration and the global carbon cycle. – Biogeochemistry, 48, 7–20. DOI: 10.1023/A:1006247623877

Spötl, CH. – Fairchild, I. J. – Tooth, A. F. (2005): Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. – Geochimica et Cosmochimica Acta, 69, 2451–2468. DOI: 10.1016/j.gca.2004.12.009

Stumm, W. – Morgan, J. J. (1996): Aquatic chemistry: Chemical Equilibria and Rates in Natural Waters. – Wiley-Interscience; 3rd edition.

Vadillo, I. – Benavente, J. – Carrasco, F. – Soler, A. – Linán, C. (2010): Isotopic (13C) Signature of CO2 Sources in the Vadose Zone of a Mediterranean Karst (Nerja Cave Site, Southern Spain). – Environmental Earth Sciences, Advances in Research in Karst Media, 463–468.

Were, A. – Serrano-Ortiz, P. – Moreno de Jong, C. – Villagarcía, L. – Domingo, F. – Kowalski, A. S. (2010): Ventilation of subterranean CO2 and Eddy covariance incongruities over carbonate ecosystems. – Biogeosciences, 7, 859–867. DOI: 10.5194/bg-7-859-2010

Yoshimura, K. – Nakao, S. – Noto, M. – Inokura, Y. – Urata, M. – Chen, P. – Lin, P. W. (2001): Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan – chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. – Chemical Geology, 177, 415–430. DOI: 10.1016/S0009-2541(00)00423-X

Metriky

314

Views

155

PDF views