Využití gamaspektrometrie při studiu spodnobadenských sedimentů ve vrtu 2241_B Brno-Černá Pole

Lucie Dostalíková, Hana Valentíková, Slavomír Nehyba

Abstrakt

Lower Badenian deposits represent volumetrically significant part of the Carpathian Foredeep infill. New drilled borehole 2241_B Brno-Černá Pole recorded sedimentary profile of these deposits with an almost complete core data. Two different Lower Badenian facies were documented. The first facies of calcareous clays (Tegel) have been documented in depths 20–167 m. Calcareous clays cover underlying “Brno sands“, which represent the second lithofacies and were recorded in depths 167–236 m. Gamma-ray spectrometry was studied on 418 samples of both clays and sands. The results show signifi cant differences in both concentrations and source of signal for these two lithofacies. Lower Badenian clays reveal in general relatively higher concentrations of Th and K than was recognised for Lower Badenian sands. However, concentrations of U are higher in Lower Badenian sands. Remarkable is unusually high U content in selected samples from “Brno sands” (which was also confirmed by supplementary XRF analyses). Whereas Lower Badenian clays were deposited in mostly oxidic condition, deposition of “Brno sands” reveals more reducing conditions. The value Th /K points to varying mineralogy of clays, which is preliminary connected with alternation of more or less humid/arid climatic phases during Lower Badenian. Similar diff erences within the Lower Badenian sands are explained by source area variations.

Bibliografická citace

Dostalíková, L., Valentíková, H., & Nehyba, S. (2017). Využití gamaspektrometrie při studiu spodnobadenských sedimentů ve vrtu 2241_B Brno-Černá Pole. Geologické výzkumy na Moravě a ve Slezsku, 24(1-2). doi:http://dx.doi.org/10.5817/GVMS2017-1-2-07

Klíčová slova

Carpathian Foredeep, Lower Badenian, Neogene deposits, gamma ray logging, clastic sediments

Plný Text:

HTML

Reference

Zobrazit literaturu Skrýt literaturu

Adams, J. A. S. – Weaver, E. (1958): Thorium to uranium ratios as indicators of sedimentary process: example of concept of geochemical facies. – AAPG Bulletin, 42, 387–430. Akinlotan, O. (2017): Geochemical analysis for paleoenvironmental interpretations – a case study of the English Wealden (Lower Cretaceous, south-east England). – Geological Quarterly, 61 (1), 227–238.

Berstad, S. – Dypvik, H. (1982): Sedimentological evolution and sedimentological evolution and natural radioactivity of tertiary sediments from the Central North Sea. – Journal of Petroleum Geology, 5 (1), 77–88. https://doi.org/10.1111/j.1747-5457.1982.tb00561.x

Brzobohatý, R. – Cicha, I. (1993): Karpatská předhlubeň. – In: Přichystal, A. – Obstová, V. – Suk, M. (eds): Geologie Moravy a Slezska. Sborník příspěvků k 90. výročí narození prof. dr. K. Zapletala, 123–128. Moravské zemské muzeum a Sekce geologických věd Přf MU. Brno.

Doláková, N. – Brzobohatý, R. – Hladilová, Š. – Nehyba, S. (2008): The red-algal facies of the Lower Badenian limestones of the Carpathian Foredeep in Moravia (Czech Republic). – Geologica Carpathica, 59 (2), 133–146.

Doveton, J. H. (1991): Lithofacies and geochemical facies profiles from nuclear wireline logs: new subsurface templates for sedimentary modelling. – In: Franseen, E. K. – Watney, W. L. – Kendall, C. J. – Ross, W. (eds): Sedimentary modelling-computer simulations and methods for improved parameter definition. – Kansas Geological Society Bulletin, 233, 101–110.

Doveton, J. H. – Merriam, D. F. (2004): Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface. – Chemical Geology, 206, 249–258. https://doi.org/10.1016/j.chemgeo.2003.12.027

Hesselbo, S. P. (1996): Stratigraphy, Cenozoic of the Atlantic margin, offshore New Jersey. – In: Mountain, G. S. – Miller, K. G. – Blum, P. – Poag, C. W. – Twichell, D. C. (eds): Proceedings of the Ocean Drilling Program. – Scientific Results,150, 411–422.

Holcová, K. – Hrabovský, J. – Nehyba, S. – Hladilová, Š. – Doláková, N. – Demény, A. (2015): The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record. Facies, Springer, 61, 1.

Krystek, I. (1982): Miocenní sedimenty na území města Brna. – In: Brno a geologie, ČSVTS, 190–193, Brno.

Krystek, I. (1974): Výsledky sedimentologického výzkumu sedimentů spodního badenu v karpatské předhlubni (na Moravě). – Folia UJEP, XV, Geologia, 8, 1–32. Brno.

Mange-Rajetzky, M. A. (1995): Subdivision and correlation of monotonous sandstone sequences using high-resolution heavy-mineral analysis, a case study: the Triassic of the Central Graben. – In: Dunay, R. E. – Hailwood, E. A. (eds): Non-biostratigraphical Methods of Dating and Correlation. – Geological Society, London, Special Publications, 89, 23–31. https://doi.org/10.1144/GSL.SP.1995.089.01.03

Morton, A. C. – Berge, C. (1995): Heavy mineral suites in the Statfjord and Nansen Formations of the Brent Field, North Sea: a new tool for reservoir subdivision and correlation. Petroleum Geoscience, 1, 355–364. https://doi.org/10.1144/petgeo.1.4.355

Morton, A. C. – Hurst, A. (1995): Correlation of sandstones using heavy minerals: an example from the Statfj ord Formation of the Snorre Field, northern North Sea. – In: Dunay, R. E. – Hailwood, E. A. (eds): Non-biostratigraphical Methods of Dating and Correlation. – Geological Society, London, Special Publications, 89, 3–23. https://doi.org/10.1144/GSL.SP.1995.089.01.02

Müller, P. – Novák, Z. – Bubík, M. – Buriánková, K. – Čurda, J. – Eliáš, M. – Gilíková, H. – Gregerová, M. – Grym, V. – Hanák, J. – Hanžl, P. – Havlíček, P. – Hrádek, M. – Kadlec, J. – Krejčí, O. – Květoňová, E. – Melichar, R. – Müller, V. – Müllerová, H. – Novák, M. – Otava, J. – Pálenský, P. – Petrová, P. – Píše, J. – Sedlák, J. – Šmerdová, B. – Valoch, K. – Vít, J. (2000): Geologie Brna a okolí. – Český geologický ústav. Praha.

Myers, K. J. – Wignall, P. B. (1987): Understanding Jurassic organic-rich mudrocks – new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. – In: Legget, J. K. – Zuff a, G. G. (eds): Marine clastic sedimentology: London, Graham and Trotman, 172–189.

Nehyba, S. – Holcová, K. – Gedl, P. – Doláková, N. (2016): The Lower Badenian transgressive-regressive cycles – a case study from Oslavany (Carpathian Foredeep, Czech Republic). – Neues Jahrbuch für Geologie und Paläontologie, Stuttgart, 279, 2, 209–238.

Nehyba, S. – Jašková, V. (2012): Výsledky vrtného průzkumu na lokalitě Hluchov (sedimenty spodního badenu karpatské předhlubně). – Geologické výzkumy na Moravě a ve Slezsku, 19, 1–2, 36–41.

Nehyba, S. – Kirchner, K. – Mackovčin, P. – Demek, J. (2008): Sedimentárně-petrografi cké studium neogenních a pleistocenních sedimentů v oblasti Brno-Švédské šance. – Geologické výzkumy na Moravě a ve Slezsku v roce 2007, 15, 31–35. Brno.

Rider, M. (1996): The Geological Interpretation of Wireline Logs. Whittles, Caithness.

Ruffell, A. – Worden, R. (2000): Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cretaceous) of southern England and southern France. – Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 265–283. https://doi.org/10.1016/S0031-0182(99)00119-4

Schnyder, J. – Ruffell, A. – Deconinck, J. F. – Baudin, F. (2006): Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, U. K.). – Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 303–320. https://doi.org/10.1016/j.palaeo.2005.06.027

Tomanová Petrová, P. – Bubík, M. – Buriánek, D. – Gilíková, H. – Otava, J. – Procházka, M. – Starý, J. – Vít, J. (2015): Závěrečná zpráva průzkumného geologického vrtu 2241_B Brno-Černá Pole. – MS, Závěrečná zpráva, 55 s. Archiv ČGS Praha.

Zborník, V. – Nehyba, S. – Jašková, V. (2013): Výsledky vrtného průzkumu na lokalitě Brus (neogenní sedimenty karpatské předhlubně). – Geologické výzkumy na Moravě a ve Slezsku, 20, 63–68.

https://doi.org/10.5817/GVMS2017-1-2-07