GENEZE KŘEMENNÝCH ŽIL U VELKÉ KRAŠE V SILEZIKU

Roč.17,č.1-2(2010)

Abstrakt

Fluid inclusions from the vein quartz near Velká Kraš have been investigated. Inclusions with two immiscible liquids, aqueous (L1) and carbonic (L2) one, have been found so far. Most of inclusions have a stable ratio of both liquids (L2/L1 = 0.1). Based on petrographic observation we could state that fluids might be trapped close to the one phase and two phase boundary of the H2O-NaCl-CO2 system. The two cogenetic fluid inclusions, with immiscible CO2-rich and H2O-rich fluid phases, have been used for an estimation of the p-T conditions. The temperature 320 °C and presure 2 050 bars could be a lower limit for the precipitation of the quartz. The salinity of the aqueous solution is 4.5 mass. % NaCl eq. The trapped fluids show a nature of the pegmatite post-magmatic solutions.


Klíčová slova:
Silesicum; quartz; fluid inclusions; oxygen isotopes
Reference

Ackerman, L. – Zachariáš, J. – Pudilová, M. (2007): P–T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. – Int. J. Earth. Sci. (Geol. Rundsch.), 96, 623–638.
Bakker, R. J. (2003): Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. – Chemical Geology, 194, 3–23.
Bodnar, R. J. (1993): Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. – Geochim. Cosmochim. Acta, 57, 683–684.
Davis, D. W. – Lowenstein, T. K. – Spencer, R. J. (1990): Melting behavior of fluid inclusions in laboratory-grow halite crystals in the system NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and NaCl-CaCl2-H2O. – Geochim. Cosmochim. Acta, 54, 591–601.
Duan, Z. – Sun, R. (2003): An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. – Chemical Geology, 193, 257–271.
Kasemann, S. – Meixner, A. – Rocholl, A. – Vennemann, T. – Schmitt, A. – Wiedenbeck, M. (2001): Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612, and reference materials JB-2G and JR-2G. – Geostandards Newsletter, V. 25, 405–416.
Kozłowski, A. (2002): Crush events in granitoid pegmatites as recorded by quartz crystals. – Polskie Towarzystwo Mineralogiczne – Prace Specjalne, Mineralogical Society of Poland – Special Papers, Zeszyt 20 (Vol. 20), 117–119.
Kozłowski, A. – Metz, P. (2003): Post-magmatic mineralisation in the granitoids of the Strzelin Massif, SW Poland – a fluid inclusion study. – Polskie Towarzystwo Mineralogiczne – Prace Specjalne, Mineralogical Society of Poland – Special Papers, Zeszyt 23 (Vol. 23), 102–104.
Kruťa, T. (1973): Slezské nerosty a jejich literatura. – MM Brno. 378 str.
Kučera, J. – Muchez, Ph. – Slobodník, M. – Prochaska, W. (2010): Geochemistry of highly saline fluids in the Moravo-Silesian Palaeozoic siliciclastic sequences: genetic implications. – Int. J .Earth. Sci. (Geol. Rundsch.), 99, 269–284.
Mališ, E. – Pavlík, J. (1974): Prospekce křemene pro čiré křemenné sklo na severní Moravě a v Orlických horách. – Sborník GPO, 6, 129–137. Ostrava.
Sirbescu, M. L. C. – Nabelek, P. I. (2003): Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—Evidence from fluid inclusions. – Geochim. Cosmochim. Acta, 67, 13, 2443–2465.
Slobodník, M. – Muchez, Ph. – Dolníček, Z. – Žák, L. (1999): Regional occurrence of saline, mineralising fluids at the eastern border of the Bohemian Massif. – In: Mineral Deposits: Processes to Processing (ed. C. J. Stanley) A. A. Balkema, Rotterdam, 901–904.
Staněk, J. – Kalášek, J. (1953): O výskytech molybdenitu v žulovském plutonu. – Věst. Ústř. Úst. geol., 28, 271–277. Praha.
Zheng, Y. F. (1993): Calculation of oxygen isotope fractionation in anhydrous silicate minerals. – Geochim. Cosmochim. Acta, 57, 1079–1091.

Metriky

296

Views

200

PDF views