MAGMATICKÝ A POSTMAGMATICKÝ VÝVOJ HORNIN MONCHIQUIT-PIKRITOVÉ SKUPINY V OKOLÍ VALAŠSKÉHO MEZIŘÍČÍ

David Buriánek

Abstrakt

New results of petrographical investigations of the Early Cretaceous rocks monchiquite-picrite group in the area around the town of Valašské Meziříčí (Silesian Unit of the flysh belt, the West Carpathians) provide evidence on polyphase magmatic and postmagmatic evolution. All observed textural and mineralogical features originated during injection of Mg-rich magma into wet sediments or on the sea floor and subsequent reaction with seawater. Occasional presence of the amphibole (kaersutite) is controlled by high volatile content. The compositional evolution trend of pyroxene from diopside towards aegirine and spinelides from chromium spinels core to magnetite rim can be explained due to crystallization of the residual melt under higher oxygen fugacity. During cooling a part of the primary magmatic assemblage was transformed to the secondary minerals. Alteration products include chlorite, magnetite, serpentine, limonite, albite, titanite, K-fedspars and calcite, some of which fill vesicles and/or joints.

Bibliografická citace

Buriánek, D. (2016). MAGMATICKÝ A POSTMAGMATICKÝ VÝVOJ HORNIN MONCHIQUIT-PIKRITOVÉ SKUPINY V OKOLÍ VALAŠSKÉHO MEZIŘÍČÍ. Geologické výzkumy na Moravě a ve Slezsku, 17(1-2). Získáno z https://journals.muni.cz/gvms/article/view/4746

Klíčová slova

Silesian Unit; petrology; picrite; monchiquite; pyroxene; hydrothermal alteration

Plný Text:

Reference

Zobrazit literaturu Skrýt literaturu

Anderson, J. G. (1974): The Geology of Alángorssuaq, northern Nunarssuit complex, South Greenland. – MS, PhD thesis, University of Aberdeen, UK.
Bailey, D. K. (1969): The stability of acmite in the presence of H2O. – Amer. J. Sci., 267A, 1–16.
Barnes, S. J. – Roeder, P. L. (2001): The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. – J. Petrol, 42, 12, 2279–2302.
Buriánek, D. – Skácelová, Z. (2007): Význam magnetické susceptibility pro geologické mapování hornin těšínitové asociace na listu 1 : 25 000 Starý Jičín (25-124). – Geol. Výzk. Mor. Slez. v roce 2006, 14, 62–65. Brno.
Dolníček, Z. – Kropáč, K. – Uher, P. – Polách, M. (v tisku) Mineralogical and geochemical evidence for multi-stage origin of mineral veins hosted by teschenites at Tichá, Outer Western Carpathians, Czech Republic. Chemie der Erde – Geochemistry, In Press, Corrected Proof.
Dostal, J. – Owen, J. V. (1998): Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. – Geol. Randsch., 87, 1, 67–77.
Droop, G. T. R. (1987): A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. – Mineral. Mag., 51, 431–437.
Hovorka, D. – Spišiak, J. (1988): Mezozoický vulkanizmus Západných Karpát. – Veda, 263 str. Bratislava.
Kamenetsky, V. – Crawford, A. J. – Meffre, S. (2001): Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. – J. Petrol., 42, 655–671.
Krejčí, O. – Adamová, M. – Bubík, M. – Fojt, B. – Přichystal, A. – Švábenická, L. (1999): Geologická stavba slezské a podslezské jednotky v řečišti Bečvy u Choryně po odkrytí během povodně v roce 1997. – Geol. Výzk. Mor. Slez. v r. 1998, 59–65. Brno.
Kretz, R. (1983): Symbols for rock-forming minerals. – Amer. Mineral., 68, 277–279.
Larsen, L. M. (1976): Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. – J. Petrol., 17, 258–290.
Leake, B. E. – Woolley, A. R. – Arps, C. E. S. – Birch, W. D. – Gilbert, M. C. – Grice, J. D. – Hawthorne, F. C. – Kato, A. – Kisch, H. J. – Krivovichev, V. G. – Linthout, K. – Laird, J. – Mandarino, J. – Maresch, W. V. – Nickel, E. H. – Rock, N. M. S. – Schumacher, J. C., Smith, D. C. – Stephenson, N. C. N. – Ungaretti, L. – Whittaker, E. J. W. – Youzhi, G. (1997): Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. – Eur. J. Mineral., 9, 623–651.
Leung, I. S. (1974): Sector zoned titanaugites: morphology, crystalchemistry and growth. – Am. Mineral., 59, 127–138.
Lucińska-Anazkiewicz, A. – Villa, I. M. – Anazkiewicz, R. – Ślaczka, A. (2002): 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. – Geol. Carpath., 53, 45–52.
Menčík, E. – Adamová, M. – Dvořák, J. – Dudek, A. – Jetel, J. – Jurková, A. – Hanzlíková, E. – Houša, V. – Paslová, H. – Rybářová, L. – Šmíd, B. – Šebesta, J. – Tyráček, J. – Vašíček, Z. (1983): Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny. – Ústř. Úst. geol. 304 str. Praha.
Morimoto, N. – Fabries, J. – Ferguson, A. K. – Ginzburg, I. V. – Ross, M. – Seifert, F. A. – Zussman, J. – Aoki, K. (1988): Nomenclature of pyroxenes. – Mineral. Mag. 52, 535–550.
Nash, W. P. – Wilkinson J. F. G. (1970): Shonkin Sag laccolith, Montana. I: Mafic minerals and estimates of temperature, pressure, oxygen fugacity and silica activity. – Contrib. Mineral. Petrol. 25, 241–269.
Rock, N. M. S. (1987): The nature and origin of lamprophyres: an overview. Geological Society, London, Special Publications, 30(1), 191–226.
Roeder, P. L. – Reynolds, I. (1991): Crystallization of chromite and chromium solubility in basaltic melts. – J. Petrol., 32, 909–934.
Schumacher, J. C. (1997): Appendix 2: the estimate of ferric iron in electron microprobe analysis of amphiboles. – Can. Mineral., 35, 238–246.
Šmíd, B. (1978): Výzkum vyvřelých hornin těšínitové asociace. – MS, zprávy Sb. 835, I. a II díl. Archiv ČGS. Brno.
Urubek, T. – Dolníček, Z. (2009): Hydrotermální mineralizace v jílovcích lhoteckého souvrství u Choryně (slezská jednotka, Vnější Západní Karpaty). – Geol. výzk. Mor. Slez., 81–84, Brno.