ALTERACE DETRITICKÉHO TITANITU V KULMU DRAHANSKÉ VRCHOVINY

Roč.22,č.1-2(2015)

Abstrakt
Titanite is a common accessory mineral of magmatic rocks, low- and medium-grade metamorphic rocks and it occurs as a detrital mineral in clastic sediments. Our paper deals with titanite alterations as a result of interaction of diagenetic fluids with detrital titanite during deep burial of sedimentary rocks of Drahany Upland, Protivanov Formation. Detrital titanites and their alteration products were examined by electron microprobe. Titanite dissolution was observed from the rim and along the cracks, accompanied by the formation of an authigenic calcite, TiO2 phase, synchysite-(Ce), and rarely chlorite. With an increasing degree of alteration, detrital titanite occurs as small irregular relics inside a mixture of authigenic minerals. Based on the composition of authigenic minerals, we can suppose diagenetic fluid rich in CO2, F and Ca responsible for alteration of detrital titanite. The maximum temperatures in this area during deep burial of sedimentary rocks reached 250–300 °C, corresponding to the conditions of very low-grade
metamorphism. Contents of REE (0.67–3.55 wt. % REE2O3) in detrital titanite are rather high and vary significantly. Authigenic synchysite-(Ce) compared with detrital titanite strongly prefers LREE over HREE, indicating that LREE released during dissolution of detrital titanite were preferentially incorporated into the structure of synchysite-(Ce), whereas HREE were mobilized and removed away by diagenetic fluids.

Klíčová slova:
Drahany Upland; Protivanov Formation; detrital titanite; authigenic synchysite-(Ce); diagenetic alteration; REE mobility; graywackes
Reference

Čopjaková, R. (2007): Odraz změn provenience v psefitické a psamitické frakci sedimentů myslejovického souvrství. – MS, disertační práce, PřF MU, 137, Brno.

Čopjaková, R. – Novák, M. – Franců, E. (2011): Formation of authigenic monazite-(Ce) to monazite-(Nd) from Upper Carboniferous graywackes of the DrahanyUpland: Roles of the chemical composition of host rock and Burian temperature. – Lithos, 127, 373–385. https://doi.org/10.1016/j.lithos.2011.08.001">https://doi.org/10.1016/j.lithos.2011.08.001

Dvořák, J. (1973): Synsedimentary tectonics of the Paleozoic of the Drahany Upland (Sudeticum, Moravia, Czechoslovakia). – Tectonophysics, 17, 359–391. https://doi.org/10.1016/0040-1951%2873%2990126-1">https://doi.org/10.1016/0040-1951(73)90126-1

Deer, W. A. – Howie, R. A. – Zussman, J. (1982): Rock forming minerals. Orthosilicates vol. 1A. – Longman, London, 443–466. 936 str.

Franke, W. (1989): Tectonostratigraphic units in the Variscan belt of central Europe, in: Dalmeyer, R. D. (ed.): Terranes in the circum-Atlantic Paleozoic orogens. – Geological Society of America Special Paper, 230, 67–90.

Hartley, A. J. – Otava, J. (2001): Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. – Journal of the Geological Society, 158, 137–150. https://doi.org/10.1144/jgs.158.1.137">https://doi.org/10.1144/jgs.158.1.137

Horie, K. – Hidaka, H. – Gauthier-Lafaye, F. (2008): Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral phases for actinides. – Physics and Chemistry of the Earth, 33, 962–968. https://doi.org/10.1016/j.pce.2008.05.008">https://doi.org/10.1016/j.pce.2008.05.008

McDonough, W. F. – Sun, S. S. (1995): Composition of the Earth. – Chemical Geology, 120, 223–253. https://doi.org/10.1016/0009-2541%2894%2900140-4">https://doi.org/10.1016/0009-2541(94)00140-4

Middleton, A. W. – Förster, H.-J. – Uysal, I. T. – Golding, S. D. – Rhede, D. (2013): Accessory phases from the Soultz monzogranite, Soultz-sous-Forêts, France: Implications for titanite destabilisation and diff erential REE, Y and Th mobility in hydrothermal systems. – Chemical Geology, 335, 105–117. https://doi.org/10.1016/j.chemgeo.2012.10.047">https://doi.org/10.1016/j.chemgeo.2012.10.047

Mísař, Z. – Dudek, A. – Havlena, V. – Weiss, J. (1983): Geologie ČSSR I. Český masív. – SPN Praha, 336 str.

Morad, S. – El-Ghali, M. A. K. – Caja, M. A. – Al-Ramadan, K. – Mansurbeg, H. (2009): Hydrothermal alteration of magmatic titanite: Evidence from Proterozoic granitic rocks, Southeastern Sweden. – The Canadian Mineralogist, 47, 4, 801–811. https://doi.org/10.3749/canmin.47.4.801">https://doi.org/10.3749/canmin.47.4.801

Pan, Y. – Fleet, M.E. – Macrae, N. D. (1993): Late alteration in titanite (CaTiSiO5): Redistribution and remobilization of rare earth elements and implications for U/Pb and Th /Pb geochronology and nuclear waste disposal. – Geochimica et Cosmochimica Acta, 57, 355–367. https://doi.org/10.1016/0016-7037%2893%2990437-2">https://doi.org/10.1016/0016-7037(93)90437-2

Pough, F. H. (1934): Octahedrite as an alteration product of titanite. – American Mineralogist, 19, 599–602.

Raade, G. (1969): Cavity minerals from the Permiam biotite granite at Nedre Eiker church. – Norks Geologisk Tidsskrift , 49, 227–239.

Rubin, J. N. – Henry, C. D. – Price, J. G. (1993): The mobility of zirconium and other “immobile” elements during hydrothermal alteration. – Chemical Geology, 110, 29–47. https://doi.org/10.1016/0009-2541%2893%2990246-F">https://doi.org/10.1016/0009-2541(93)90246-F

Schulmann, K. – Gayer, R. (2000): A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. – Journal of the Geological Society, London, 157, 401–406. https://doi.org/10.1144/jgs.157.2.401">https://doi.org/10.1144/jgs.157.2.401

Van Baalen, M. R. (1993): Titanium mobility in metamorphic systems: a review. – Chemical Geology, 110, 233–249. https://doi.org/10.1016/0009-2541%2893%2990256-I">https://doi.org/10.1016/0009-2541(93)90256-I

Whitney, D. L. – Evans, B. W. (2010): Abbreviations for names of rock-forming minerals. – American Mineralogist, 95, 185–187. https://doi.org/10.2138/am.2010.3371">https://doi.org/10.2138/am.2010.3371

Zachovalová, K. (2003): Valouny magmatitů spodnokarbonských slepenců – indikátory geotektonického prostředí. – MS, disertační práce, PřF MU, 148 str. Brno.

Metriky

0

Crossref logo

0


537

Views

282

PDF views