Formation doubly terminated crystals of quartz in Carboniferous limestones from the Brañes site in northwestern Spain

Roč.32,č.1-2(2025)

Abstrakt

The Carboniferous limestones from the Brañes site in northwestern Spain contain dark, often doubly terminated authigenic quartz crystals. Optical microscopy and fluid inclusion studies of quartz crystals provide insights into the formation and thermal history of the surrounding limestones. The core of quartz crystals has been formed by filling voids created through the dissolution of sulphate. The morphology of the quartz crystals supports
this interpretation. The primary and pseudosecondary fluid inclusions within external zones in these quartz crystals are mostly two-phase, consisting of aqueous liquid and a vapor bubble. Cryometric measurements show an initial melting temperature (Tfm) of approximately −50 °C, with melting temperatures (Tmice) ranging from −18.1 °C to −21.8 °C and −42.4 °C to −45.0 °C, respectively. These melting temperatures indicate high
salinity, estimated between 20 mass% and 29 mass% CaCl2 equivalent. The homogenization temperatures of the fluid inclusions range from 60 °C to 147 °C, and suggest that the external zones of the quartz crystals were formed during peak temperature conditions of diagenesis in the Early Permian period.


Klíčová slova:
Spain, Valdeteja Formation, authigenic quartz, hydrothermal mineralization, fluid inclusions
Reference

Albright, J. L., Lueth, V. W. (2003). Pecos diamonds – Quartz and dolomite crystals from the Seven Rivers Formation outcrops of southeastern New Mexico. – New Mexico Geology, 25, 63–74. https://doi.org/10.58799/NMG-v25n3.63

Bahamonde, J.R., Colmenero, J.R., Vera, C., (1997). Growth and demise of Upper Carboniferous carbonate platforms in the Eastern Cantabrian Zone, Asturias, NW Spain. – Sedimentary Geology, 110, 99–122. https://doi.org/10.1016/S0037-0738(96)00076-0

Bakker, R.J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. – Chemical Geology, 194, 1–3, 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1

Bastida, F., (2004). Zona Cantábrica (Capítulo 2, Macizo Ibérico). In: Vera J.A. (ed.), Geología de España, SCE-IGME, 25–49.

Bennett, P. C., Melcer, M. E., Siegel, D. I., Hassett, J. P. (1988). The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C. – Geochimica et Cosmochimica Acta, 52, 1521–1530. https://doi.org/10.1016/0016-7037(88)90222-0

Bustillo, M.A. (2010). Silicification of Continental Carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Developments in Sedimentology, 62, 153–178, Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/S0070-4571(09)06203-7

Díaz-García, I., Merino-Tomé, Ó., Quijada, I.E., Bahamonde, J.R., Fernández, L.P., Della Porta, G., Samankassou, E., Kulagina, E.I., Borrego, Á.G., Martín-Llaneza, J., Del Pozo, J.F. (2024). Intrasediment gypsum in subtidal offshore carbonates as a witness of basin-wide evaporitic precipitation. The case of the southern Variscan foreland basin (mid-Carboniferous). – Sedimentary Geology, 464, 106605. https://doi.org/10.1016/j.sedgeo.2024.106605

Dolníček, Z., Buriánek, D. (2001). Origin of the Jurassic quartz geodes from the Moravian karst: fluid inclusion and stable isotope study. – Acta Universitatis Palackianae Olomucensis Facultas rerum naturalium, 37, 7–11, Olomouc.

Eichmüller, K. (1985). Die Valdeteja Formation: Aufbau und Geschichte einer oberkarbonischen Karbonatplattform (Kantabrisches Gebirge, Nordspanien). – Facies, 13, 45–155. https://doi.org/10.1007/BF02536901

Fernández, L. P. (1993). La Formación San Emiliano (Carbonífero de la Zona Cantábrica, NO de España): estratigrafía y extensión lateral. Algunas implicaciones paleogeográficas. – Trabajos de Geología, 19, 97–122.

Fernández, L. P., Bahamonde, J. R., Barba, P., Colmenero, J. R., Heredia, N.,Rodréguez‐Fernández, L.R., Motis, K., (2004). Secuencia sinorogénica. In: Vera J.A. (Ed.), Geología de España, SGE‐IGME, 34–42.

Flügel, E. (2004). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. – Berlin, Springer-Verlag, 984 p. https://doi.org/10.1007/978-3-662-08726-8

Gasparrini, M., Bechstädt, T., Boni, M. (2006). Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. – Marine and Petroleum Geology, 23(5), 543–568. https://doi.org/10.1016/j.marpetgeo.2006.05.003

Haroldson, E. L., Kohl, M. S. (2020). Fluid and solid inclusions in East Tennessee field diamonds (doubly terminated quartz crystals). Abstracts with Programs. – Geological Society of America, 52(2). https://doi.org/10.1130/abs/2020SE-345076

Henchiri, M., Abidi, R., Jemmali, N. (2015). Large euhedral quartz crystals in the Triassic dolomites and evaporites of central Tunisia: implications for silica diagenesis in sulphate-rich and high-Mg environments. – Arabian Journal of Geosciences, 8, 8899-8910. https://doi.org/10.1007/s12517-015-1788-5

Herrero, M.J., Marfil, R., Escavy, J.I., Al-Aasm, I., Scherer, M. (2020). Diagenetic Origin of Bipyramidal Quartz and Hydrothermal Aragonites within the Upper Triassic Saline Succession of the Iberian Basin: Implications for Interpreting the Burial-Thermal Evolution of the Basin. – Minerals, 10, 177. https://doi.org/10.3390/min10020177

Julivert, M. (1978): Hercynian orogeny and Carboniferous palaeogeography in northwestern Spain: a model of deformation-sedimentation relationships. – Zeitschrift der Deutschen Geologischen Gesellschaft, 129, 565–592.

Knauth, P. (1994). Petrogenesis of chert. – Reviews in Mineralogy and Geochemistry, 29, 233–258.

Kolawole, F., Evenick, J.C. (2023). Global distribution of geothermal gradients in sedimentary basins. – Geoscience Frontiers, 14(6), 101685. https://doi.org/10.1016/j.gsf.2023.101685

Marco, A., Pulgar, J.A. (1982). An approach to the tectonostratigraphic evolution of the Cantabrian foreland thrust and fold belt, Hercynian Cordillera of NW Spain. – Neues Jahrbuch für Geologie und Paläontologie, 163/2, 256–260. https://doi.org/10.1127/njgpa/163/1982/256

Naden, J. (1996). CalcicBrine: a Microsoft Excel 5.0 add-in for calculating salinities from microthermometric data in the system NaCl-CaCl2-H2O. In: Brown P.E., Hagemann S.G. (eds.), PACROFI VI, Madison, WI.

Raven, J.G.M., Van Der Pluijm, B.A. (1986). Metamorphic fluids and transtension in the Cantabrian Mountains of northern Spain: an application of the conodont colour alteration index. – Geological Magazine, 123(6), 673–681. https://doi.org/10.1017/S0016756800024183

Roedder, E. (1984). Fluid inclusions. Mineralogical Society of America, Reviews in Mineralogy, vol. 12, 646 pp. https://doi.org/10.1515/9781501508271

Sharma, M., Shukla, B. (2019). Akinetes From Late Paleoproterozoic Salkhan Limestone (>1600 Ma) of India: A Proxy for Understanding Life in Extreme Conditions. – Frontiers in Microbiology, 10, 397. https://doi.org/10.3389/fmicb.2019.00397

Sharma, M., Sergeev, V.N. (2004). Genesis of carbonate precipitates patterns and associated microfossils in Mesoproterozoic formations of India and Russia a comparative study. – Precambrian Research, 134, 317–347. https://doi.org/10.1016/j.precamres.2004.07.001

Tarr, W.A., Lonsdale, J.T. (1929). Pseudocubic quartz crystals from Artesia, New Mexico. – American Mineralogist, 14, 50–53.

Veselovsky, Z., (2004). Integrated numerical modelling of a polyhistory basin, Southern Cantabrian Basin (Palaeozoic, NW-Spain): Gaea heidelbergensis [CD-ROM], vol. 13, 225 pp.

Villa, E., Sanchez de Posada, L. (2009). Carboniferous of the Cantabrian Zone. In: Spanish Geological Frameworks and Geosites, An approach to Spanish geological heritage of international relevance, 44–55.

Wagner, R.H., Winkler Prins, C.J., Riding, R.E. (1971). Lithostratigraphic units of the lower part of the Carboniferous in northern León, Spain. – Trabajos de Geologia, 4, 603–633. Oviedo University.

Winkler Prins, C.F. (1968). Carboniferousa Productidina and chonetidina of the Cantabrian Mountains (NW Spain): Systemitics, Stratigraphy and Plaecology. – Leidse Geologische Mededelingen., 43, 41–126.

Zhang, Y.G., Frantz, J.D. (1987). Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. – Chemical Geology, 64 3–4, 335–350. https://doi.org/10.1016/0009-2541(87)90012-X

Metriky

0

Crossref logo

0


0

Views

0

pdf (angličtina) views

0

html (angličtina) views