Spodnomiocénní fluviální sedimenty v okolí Nových Bránic

Roč.32,č.1-2(2025)

Abstrakt

Sedimentological study of the deposits at the locality near Nové Bránice provides data about Eggenburgian–Ottnangian deposits of the Carpathian Foredeep basin in the area. Altogether 9 lithofacies have been identified and deposits of the two facies associations/ depositional environment have been recognised in the outcrop. The first one is represented by deposits of the fluvial channel formed by traction currents of poorly confined waterflows. In-channel bedforms (2D and 3D gravelly and sandy dunes) represent their prominent part. Braided fluvial style is supposed with important role of variation in fluvial discharge. Paleocurrent data signalises transport towards SE, S or SSW. The deposits of the second facies associations (covering the deposits of the first facies association) are interpreted as proximal overbank deposits related to flood events with important role of aggradation.
Provenance analysis of the fluvial deposits is based on the evaluation of petrography of pebbles, transparent heavy mineral assemblages, composition of garnet and rutile, and zircon studies). The assessment of the gamma-ray spectra provides supplementary data. An important role of relatively local sources has been recognised represented dominantly by local granitoids and metamorphics of the Brno Massif (primary source). The role of the next crystalline complexes (Moldanubicum, Moravian Zone) in provenance was minor. Moreover, a role of intense reworking and redeposition of material from older deposits (as recycled secondary source) is supposed. Studied fluvial system continued towards the centre of the peripheral foreland basin.


Klíčová slova:
Carpathian Foredeep, lithofacies, provenance, fluvial deposits
Reference

Adams, J. A. S., Weaver, E. (1958). Thorium to uranium ratios as indicators of sedimentary process: example of concept of geochemical facies. – AAPG Bulletin, 42, 387–430. https://doi.org/10.1306/0BDA5A89-16BD-11D7-8645000102C1865D
Aubrecht, R., Méres, Š., Sýkora, M., Mikus, T. (2009). Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). – Geologica Carpathica, 60, 463–483. https://doi.org/10.2478/v10096-009-0034-z
Batík, P., Müller, P. (1994). Vysvětlivky k souboru geologických a ekologických účelových map přírodních zdrojů v měřítku 1 : 50 000. – Edice ekologických map České republiky. Český geologický ústav. Praha.
Bridge, J. S. (2003). Rivers and Floodplains. – Blackwell, Oxford, U.K., 491 pp.
Bofill, L., Bozetti, G., Schäfer, G., Ghienne, J. F., Schuster, M., Scherer, C., deSouza, E. (2023). Quantitative facies analysis of a fluvio-aeolian system: Lower Triassic Buntsandstein Group, eastern France. – Sedimentary Geology, 465, 106634. https://doi.org/10.1016/j.sedgeo.2024.106634
Collinson, J. D. (1970). Bedforms of the Tana river, Norway. – Geografiska Annaler: Series A, Physical Geography, 52, 31–56. https://doi.org/10.1080/04353676.1970.11879807
Collinson, J. D. (1996). Alluvial sediments. Chapter 3. Sedimentary Environments: Processes, Facies and Stratigraphy, 37–81.
Colombera, L., Moutney, N. P. (2019). The lithofacies organization of fluvial channel deposits: A meta-analysis of modern rivers. – Sedimentary Geology, 383, 16–40. https://doi.org/10.1016/j.sedgeo.2019.01.011
Demek, J., Mackovčin, P., ed. (2014). Zeměpisný lexikon ČR. Hory a nížiny. – 595 s., Mendelova zemědělská a lesnická univerzita. Brno.
Doveton, J. H. (1991). Lithofacies and geochemical facies profiles from nuclear wireline logs: new subsurface templates for sedimentary modelling. – In: Franseen, E. K., Watney, W. L., Kendall, C. J., Ross, W. (eds.): Sedimentary modelling-computer simulations and methods for improved parameter definition. – Kansas Geological Society Bulletin. 233, 101–110. https://doi.org/10.17161/kgsbulletin.no.233.20451
Fielding, C.R. (2006). Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. – Sedimentary Geology, 190, 227–240. https://doi.org/10.1016/j.sedgeo.2006.05.009
Finger, F., Haunschmid, B. (1988). Die mikroskopische Untersuchungen der akzessorischen Zirkone als Methode zur Klärung der Intrusionsfolge in Granitgebieten - eine Studie im nordöstlichen oberösterreichischen Moldanubikum. – Jahrbuch der Geologischen Bundesanstalt, 131, 2, 255–266, Wien.
Folk, R. L, Ward, W. (1957). Brazos River bar: a study in the significance of grain-size parameters. – Journal of Sedimentary Petrology, 27, 3–26. Tulsa. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
Garzanti, E., Resentini, A., Ando, S., Vezzoli, G., Pereira, A., Vermeesch, P. (2015). Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). – Sedimentology, 62, 971–996. https://doi.org/10.1111/sed.12169
Harms, J. C., Southard, J. B., Spearing, D. R., Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary structures and stratification sequences. – SEPM. Dallas, 120 pp. https://doi.org/10.2110/scn.75.02
Hasseblo, S. P. (1996). Stratigraphy, Cenozoic of the Atlantic margin, offshore New Jersey. – In: Mountain, G. S., Miller, K. G., Blum, P., Poag, C. W., Twichell, D. C. (Eds.): Proceedings of the Ocean Drilling Program, Scientific Results 150, 411–422.
Hein, F. J., Walker, R. G. (1977). Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. – Canadian Journal of Earth Sciences, 14, 562–570. https://doi.org/10.1139/e77-058
Horn, B. L. D., Goldberg, K., Schultz, C. L. (2018). Interpretation of massive sandstones in ephemeral fluvial settings: A case study from the Upper Candelária Sequence (Upper Triassic, Paraná Basin, Brazil). – Journal of South American Earth Sciences, 81, 108–121. https://doi.org/10.1016/j.jsames.2017.10.009
Hubert, J. F. (1962). A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. – Journal of Sedimentary Research, 32, 3, 440–450. https://doi.org/10.1306/74D70CE5-2B21-11D7-8648000102C1865D
Kêdzior, A., Popa, M. E. (2018). An early Jurassic braided river system from Mehadia, south Carpathians, Romania. – Geological Quarterly, 62, 2, 415–432. https:// doi.org/10.7306/gq.1415
Krejčí, O., Buriánek, D., Krejčí, V., Tomanová Petrová, P. (2023). Sedimenty spodního a středního miocénu jihozápadně od Brna ve světle nových poznatků. – Zprávy o geologických výzkumech, 56, 1, 59–70. https://doi.org/10.3140/zpravy.geol.2023.08
Krumbein, W. C., Sloss, L. L. (1951). Stratigraphy and Sedimentation. San Francisco, 497 pp.
Krystek, I. (1981). Použití výzkumu společenstev těžkých minerálů v sedimentárních komplexech. – Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis, XXII, Geologia, 3, 3, 101–107.
Leclair, S. F., Brigde, J. S. (2001). Quantitative interpretation of sedimentary structures formed by river dunes. – Journal of Sedimentary Research, 71, 5, 713–716. https://doi.org/10.1306/2DC40962-0E47-11D7-8643000102C1865D
Lihou, J. C., Mange-Rajetzky, M. A. (1996). Provenance of the Sardona Flysch, eastern Swiss Alps: example of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sedimentary Geology, 105, 141–157. https://doi.org/10.1016/0037-0738(95)00147-6
Lindsey, D. A., Langer, W. H., Knepper Jr, D. H. (2005). Stratigraphy, lithology, and sedimentary features of quaternary alluvial deposits of the South Platte River and some of its tributaries east of the Front Range, Colorado. – US Geological Survey Professional Paper, 1–70. https://doi.org/10.3133/pp1705
Mader, D. (1980). Weitergewachsene Zirkone im Bundsandstein der Westeifel. – Der Aufschluss, 31, 163–170.
Mange, M. A., Maurer, H. F. W. (1992). Heavy Minerals in Colour. – Chapman and Hall, London, 147 s.
Mange, M. A., Morton, A. C. (2007). Geochemistry of heavy minerals. – Developments in Sedimentology, 58, 345–391. https://doi.org/10.1016/S0070-4571(07)58013-1

Miall, A. D. (1977). A review of the braided-river depositional environment. – Earth-Science Reviews 13, 1–62. https://doi.org/10.1016/0012-8252(77)90055-1
Miall, A. D. (1996). The Geology of Fluvial Deposits. Springer Verlag, 582 pp., Berlin.
Morton, A. C. (2007). The role of heavy mineral analysis as a geosteering tool during drilling of high–angle weels. – Developments in Sedimentology, 58, 1123–1144. https://doi.org/10.1016/S0070-4571(07)58044-1
Morton, A. C., Berge, C. (1995). Heavy mineral suites in the Statfjord and Nansen Formations of the Brent Field, North Sea: a new tool for reservoir subdivision and correlation. – Petroleum Geoscience, 1, 355–364. https://doi.org/10.1144/petgeo.1.4.355
Morton, A. C., Hurst, A., (1995). Correlation of sandstones using heavy minerals: an example from the Statfjord Formation of the Snorre Field, northern North Sea. – In: Dunay, R. E., Hailwood, E. A. (eds): Non-biostratigraphical Methods of Dating and Correlation. – Geological Society, London, Special Publications, 89, 3–23. https://doi.org/10.1144/GSL.SP.1995.089.01.02
Morton, A. C., Hallsworth, C. R. (1994). Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. – Sedimentary Geology, 90, 241–256. https://doi.org/10.1016/0037-0738(94)90041-8
Myers, K. J., Wignall, P. B. (1987). Understanding Jurassic organic-rich mudrocks - new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. – In: Legget, J. K., Zuffa, G. G. (eds.): Marine clastic sedimentology: London, Graham and Trotman, 172–189. https://doi.org/10.1007/978-94-009-3241-8_9
Nemec, W. (2005). Principles of lithostratigraphic logging and facies analyses. – Institutt for geovitenskap, Universitetet i Bergen, 1–28 pp.
Pálenský, P., Nekovařík, Č., Růžička, M. (1997). Geologická mapa 1 : 50 000, list 24-34 Ivančice. – MS Česká geologická služba. Praha.
Poldervaart, A. (1950). Statistical studies of zircon as a criterion in granitization. – Nature, 165, 574–575. https://doi.org/10.1038/165574b0
Powers, M. C. (1953). A new roundness scale for sedimentary particles. – Journal of Sedimentary Petrology, 23, 1, 118. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
Powers, M. C. (1982). Comparison chart for estimating roundness and sphericity. – AGI Data Sheet 18.
Pupin, J. P. (1980). Zircon and Granite Petrology. – Contributions to Mineralogy and Petrology, 73, 207–220. https://doi.org/10.1007/BF00381441
Pupin, J. P. (1985). Magmatic zoning of hercynian granitoids in France based on zircon typology. – Schweizerische Mineralogische und Petrographische Mitteilungen, 65, 29–56. https://doi.org/10.1007/BF00381441
Rust, B. R. (1972). Structure and process in a braided river. – Sedimentology, 18, 221–245.
https://doi.org/10.1111/j.1365-3091.1972.tb00013.x
Tolosana-Delgado, R., von Eynatten, H., Krippner, A., Meinhold, G. (2018). A multivariate discrimination scheme of detrital garnet chemistry for use in sediment provenance analysis. – Sedimentary Geology, 375, 14–26. https://doi.org/10.1016/j.sedgeo.2017.11.003
Tucker, M. ed. (1988). Techniques in Sedimentology. – Blackwell Science, 394 pp.
Walker, R. G., James, N. P. (1992). Facies Models. Response to sea level changes. – Geological Association of Canada, 1–380, Toronto.
Winter, J. (1981). Exakte tephro-stratigraphische Korrelation mit morphologisch differenzierten Zironpopulationen (Grenzbereich Unter/Mitteldevon, Eifel-Ardennen). – Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 162, 97–136.
Zellman, K. L., Plink-Björklund, P., Fricke, H. C. (2021). Testing hypotheses on signatures of precipitation variability in the river and floodplain deposits of the Paleogene San Juan Basin, New Mexico, U.S.A. – Journal of Sedimentary Research, 90, 1770–1801. https://doi.org/10.2110/jsr.2020.75
Zimmerle, W. (1979). Accessory zircon from rhyolite, Yellowstone National Park (Wyoming, U.S.A.). – Zeitschrift der deutschen Geologischen Gesellschaft, 130, 361–369.
Zingg, T. (1935). Beiträge zur Schotteranalyse. – Schweizerische Mineralogische und Petrographische Mitteilungen, 15, 39–140.
Zoleikhaei, Y., Frei, D., Morton, A., Zamanzadeh, M. S. (2016). Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: A case study from the Sefidrud and Sarbaz rivers in N and SE Iran. – Sedimentary Geology, 342, 106–117. http://dx.doi.org/10.1016/j.sedgeo.2016. 06.016

Metriky

0

Crossref logo

0


0

Views

0

pdf views

0

html views