Seasonal variations of water condensation in cave environment: A case study from the Výpustek Cave (Moravian Karst)

Roč.32,č.1-2(2025)

Abstrakt

Seasonal variations of water condensation were studied in the Výpustek Cave (Moravian Karst). Microclimatic data such as cave/external air temperatures and visitor numbers were monitored in the Škrapový Dome and exterior of the cave with one-hour step during an almost season-long monitoring campaign. Water condensation data were recorded at monthly intervals using a polished limestone tablet located in a dome near the thermometers. Long-term monitoring showed that the temperature of the cave air was controlled
by cave airflow driven by the temperature difference between the exterior and the cave, ΔTAF. Anthropogenic temperature influence appeared as peaks superimposed onto natural cave air temperatures curves and corresponded to the number of visitors. Seasonality of water condensation based on cave airflow was identified: no condensation during the UAF mode and drops of condensed water on the tablet surface in the DAF mode. Traces of calcite recrystallization were found on the tablet surface as a consequence of dissolution by the condensed water.


Klíčová slova:
cave airflows; show cave; temperature difference; Výpustek Cave; water condensation
Reference

Bögli, A. (1978). Karsthydrographie und physische Speläologie. – Springer, Berlin, 292 p. (In German). https://doi.org/10.1007/978-3-662-08051-1
de Freitas, C. R., Littlejohn, R. N., Clarkson, T. S., Kristament, S. (1982). Cave climate: asssessment of airflow and ventilation. – International Journal of Climatology, 2, 383–397. https://doi.org/10.1002/joc.3370020408
de Freitas, C. R., Schmekal, A. (2005). Prediction of condensation in caves. – Speleogenesis and Evolution of Karst Aquifers, 3, 2, 1–9.
de Freitas, C. R., Schmekal, A. (2006). Studies of condensation/evaporation processes in the Glowworm Cave, New Zealand. – International Journal of Speleology, 35, 2, 75–81. https://doi.org/10.5038/1827-806X.35.2.3
Dublyansky, V. N., Dublyansky, Y. V. (1998). The problem of condensation in karst studies. – Journal of Cave and Karst Studies, 60, 1, 3–17.
Faimon, J., Troppová, D., Baldík, V., Novotný, R. (2012). Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). International Journal of Climatology, 32, 599–623. https://doi.org/10.1002/joc.2298
Fajkošová, L. (2011). Kondenzační koroze v Amatérské jeskyni (Moravský kras). – MS, Master’s Thesis, PřF MU Brno, 74 pp. (In Czech).
Ford, T. D., Williams, P. W. (2007). Karst hydrogeology and geomorphology. – Wiley & Sons., Chicester, 576 p. https://doi.org/10.1002/9781118684986
Gerjevič, V. D. (2002). Medical survey of the staff working in the Škocjan Caves, Slovenia. – Acta Carsologica, 31/1, 8, 97–103.
Golec, M., Zajicek, P., Svetlik, I., Pachnerova Brabcova, K., Marikova, L., Cermakova, E., Ovsonkova, Z. A. (2021). Prehistoric charcoal graffiti discovered in Kateřinská Cave, Czech Republic. – Radiocarbon, 63, 2, 473–480. https://doi.org/10.1017/RDC.2021.5
Hrdý, M. (2021). Vliv venkovních a vnitřních podmínek na kondenzační korozi v Amatérské jeskyni. – MS, Bachelor’s Thesis, PřF MU Brno, 46 pp. (In Czech).
Kowalczk, A. J., Froelich, P. N. (2010). Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breath? – Earth and Planetary Science Letters, 289, 209–219. https://doi.org/10.1016/j.epsl.2009.11.010
Lang, M., Faimon, J., Ek, C. (2015). The relationship between carbon dioxide concentration and visitor numbers in the homothermic zone of the Balcarka Cave (Moravian Karst) during a period of limited ventilation. – International Journal of Speleology, 44, 2, 167–176. https://doi.org/10.5038/1827-806X.44.2.6
Lang, M., Faimon, J., Pracný, P., Kejíková, S. (2017). A show cave management: Anthropogenic CO2 in atmosphere of Výpustek Cave (Moravian Karst, Czech Republic). – Journal for Nature Conservation, 35, 40–52. https://doi.org/10.1016/j.jnc.2016.11.007
Lang, M., Faimon, J., Pracný, P., Štelcl, J., Kejíková, S., Hebelka, J. (2024). Impact of water exhaled out by visitors in show caves: a case study from the Moravian Karst (Czech Republic). – Environmental Science and Pollution Research, 31, 27117–27135. https://doi.org/10.1007/s11356-024-32946-2
Licbinsky, R., Faimon, J., Tanda, S., Hegrova, J., Goessler, W., Uberhuberova, J. (2020). Changes in the elemental composition of particulate matter in a speleotherapeutic cave. – Atmospheric Pollution Research, 11, 1142–1154. https://doi.org/10.1016/j.apr.2020.04.008
Lobo, H. A. S. (2015). Tourist carrying capacity of Santana cave (PETAR-SP, Brazil) : A new method based on a critical atmospheric parameter. Tourism Management Perspectives, 16, 67–75. https://doi.org/10.1016/j.tmp.2015.07.001
Luetscher, M., Jeannin, P.-Y. (2004). Temperature distribution in karst systems: the role of air and water fluxes. – Terra Nova, 16, 344–350. https://doi.org/10.1111/j.1365-3121.2004.00572.x
Pflitsch, A., Piasecki, J. (2003). Detection of an airflow system in Niedzwiedzia (Bear) Cave, Kletno, Poland. – Journal of Cave and Karst Studies, 65, 3, 160–173.
Russell, M. J., MacLean, V. L. (2008). Management issues in a Tasmanian tourist cave: Potential microclimatic impacts of cave modifications. – Journal of Environmental Management, 87, 474–483. https://doi.org/10.1016/j.jenvman.2007.01.012
Sánchez-Moral, S., Soler, V., Cañaveras, J. C., Sanz-Rubio, E., Vang Grieken, R., Gysels, K. (1999). Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors. – Science of the Total Environment, 243-244, 67–84. https://doi.org/10.1016/S0048-9697(99)00348-4
Sarbu, S. M., Lascu, C. (1997). Condensation corrosion in Movile Cave, Romania. – Journal of Cave and Karst Studies, 59, 3, 99–102.
Tarhule-Lips, R. F. A., Ford, D. C. (1998). Condensation corrosion in caves on Cayman Brac and Isla de Mona. – Journal of Cave and Karst Studies, 60, 2, 84–95.
White, J. H., Domínguez-Villar, D., Hartland, A. (2021). Condensation corrosion alters the oxygen and carbon isotope ratios of speleothem and limestone surfaces. – Results in Geochemistry, 2, 100008. https://doi.org/10.1016/j.ringeo.2021.100008

Metriky

0

Crossref logo

0


0

Views

0

pdf (angličtina) views

0

html (angličtina) views