Pavel Pracný, Jiří Faimon, Ludvík Kabelka


Cave speleothems grow from supersaturated dripwaters and store information about various karst processes along the water flow path. Anomalous non-saturated waters may occur if (1) rainfall water passes very rapidly through karst profile or if (2) two saturated waters of different compositions are mixed. The low mineralization close to saturation could be reached also as (3) result of calcite precipitating prior the water enters the cave. The hydrogeochemistry of four dripwaters in the Punkva Caves (Moravian Karst) was systematically studied for anomalous properties during one-year period. The drips are situated in a passage behind Přední Dóm Chamber (CP1 and CP2, 24 samples each), in Tunnel Corridor (TC1, 24 samples), and in Zadní Dóm Chamber (ZD1, 6 samples). The dripwaters CP1, CP2, and ZD1 show various flow regimes but very similar hydrogeochemical properties: electric conductivity (EC = 550–630 μS/cm), saturation (SIcalcite = 0.8–1.2), and Mg/Ca ratio (1000*(Mg/Ca) = 15–20). In contrast, the dripwater TC1 shows stable drip rate and EC = 275–350 μS/cm, SI = -0.1 to 0.3, and almost thrice as high Mg/Ca ratios as other drips. High and stable discharge of the drip TC1, combined with low EC, SI close to zero, and high Mg/Ca ratio indicate that a prior precipitation of calcite is responsible for the anomalous composition of the dripwater. The slightly negative SI values that were occasionally observed indicate that further minor processes probably participate on the water formation.

Bibliografická citace

Pracný, P., Faimon, J., & Kabelka, L. (2014). CHARAKTERISTIKA ANOMÁLNÍHO SKAPU V PUNKEVNÍCH JESKYNÍCH (MORAVSKÝ KRAS). Geologické výzkumy na Moravě a ve Slezsku, 21(1-2), 103-106.  doi:

Klíčová slova

Punkva Caves, dripwaters, prior calcite precipitation, calcite saturation

Plný Text:


Zobrazit literaturu Skrýt literaturu

Appelo, C. A. J. – Parkhurst, D. L. (1999): User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations – Water-Resources Investigations Report, 99–4259.

Balák, I. (1984): Mineralogicko-petrografický a drobně tektonický výzkum Punkevních jeskyní. – MS, diplomová práce PřF UJEP Brno.

Faimon, J. – Zimák, J. – Zajíček, P. – Schwarzová, M. – Štelcl, J. (2004): The study of recent destructive processes in the Moravian Karts caves (Czech republic). – Geographica, (Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium), 38, 1, 9–13.

Fairchild, I. J. – Borsato, A. – Tooth, A. F – Frisia, S. – Hawkesworth, C. J. – Huang, Y. – McDermott, F. & Spiro, B. (2000): Controls on trace elements (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records. – Chemical Geology, 166, 255–269.

Fairchild, I. J. – Treble, P. C. (2009): Trace elements in speleothems as recorders of environmental change. – Quaternary Science Reviews, 28, 449–468.

Glozar, P. (1984): Průzkum komínových prostor v suché části Punkevních jeskyní. – Československý kras, 35, 87–93.

Jacobson, R. L. – Langmuir, D. (1974): Dissolution constants of calcite and CaHCO3+ from 0 to 50 °C. – Geochimica et Cosmochimica Acta, 38, 301–318.

Morse, J. W. – Arvidson, R. S. (2002): The dissolution kinetics of major sedimentary carbonate minerals. – Earth-Science Reviews, 58, 51–84.

Smart, P. L. – Friederich, H. (1982): The classification of autogenic percolation waters in karst aquifers: A study in G.B. Cave, Mendip hills, England. – Proceedings University of Bristol Spelaeological Society, 16, 2, 143–159.

Tooth, A. F. – Fairchild, I. J. (2003): Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. – Journal of Hydrology, 273, 51–68.