Magdalena Šimčíková


Moravian meteorite Stannern is the only one meteorite fallen into our region which represents achondrite group of meteorites. This meteorite is very unique due to its composition and it is one of the most examined meteorite - eucrite in the world. Samples of eucrites NWA 5235 and HaH 286 found in african deserts were studied and compared with Stannern trend eucrites. NWA 5235 is relatively fresh, HaH 286 is weakly weathered, with fractures fi lled by calcite. Electron microprobe analyses showed that these meteorites represent typical non cumulate basalts which fall within main trend eucrites. They mainly consist of pyroxenes (low-Ca pyroxenes and augites) and plagioclase (bytownite – anorthite). Accessories include ilmenite, chromite, rarely silica phase, troilite and metal Fe. The bulk composition of these samples has been determined for major elements. Research of these meteorites helps to understand the petrological context of their parent bodies. It also leads to understanding of magmatic processes of asteroid 4 Vesta which is believeded to be the parent body of the eucrites.

Bibliografická citace

Šimčíková, M. (2012). EXTRATERESTRICKÉ BAZALTY NWA 5235 A HaH 286 A JEJICH POROVNÁNÍ S MORAVSKÝM METEORITEM STONAŘOV. Geologické výzkumy na Moravě a ve Slezsku, 19(1-2). doi:http://dx.doi.org/10.5817/GVMS2012-1-2-199

Klíčová slova

Stonařov, asteroide Vesta, Stannern trend eucrites, pyroxenes

Plný Text:


Zobrazit literaturu Skrýt literaturu

Barrat, J. A. – Yamaguchi, A. – Greenwood, R. C. – Bohn, M. – Cotten, J. – Benoit, M. – Franchi, I. A. (2007): The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. – Geochim. Cosmochim. Acta, 71, 4118.

Birck, J. L. – Allegre, C. J. (1978): Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb–87Sr Method. – Earth Planet. Sci. Lett, 39, 37–51. https://doi.org/10.1016/0012-821X(78)90139-5

Bogard, D. D. – Garrison, D. H. (2003): 39Ar-40Ar ages of eucrites and thermal history of asteroid (4)Vesta. – Meteoritics and Planet. Sci. 38, 5.

Bukovanská, M. (2008): Meteorit Stonařov – Stannern: Historie pádu, petrologie a stáří meteoritu. – Stonařovské meteority 1808–2008. Muzeum Vysočiny, 59–65. Jihlava.

Bukovanská, M. – Ireland, T. R. (1992): Dating and Zr/Hf ratio of zircons and baddeleyites in eucrites. – Abstract 24th An. Meet., Munich. – Bulletin of the American Astronomical Society. 24, 941.

Bukovanská, M. – Němec, I. – Šolc, M. (1998): Infrared microscopic method and possible correlations of FTIR spectra of the meteorites. – Abstract 61th An. Meet. Meteor. Soc. – Meteoritics and Planet. Sci. 33, 25–26.

Carlson, R. W. – Lungmair, G. W. (2000): Timescales of planetesimal formation and diff erentiation based on extinct and extant radioisotopes. – In: Canup, R. M. – Righter, K. (eds): Origin of the Earth and Moon, Univ. Arizona, 25–44.

Clayton, R. N. – Mayeda, T. K. (1996): Oxygen isotopes studies of achondrites. – Geochim. Cosmochim. Acta 60, 1 999–2 017. https://doi.org/10.1016/0016-7037(96)00074-9

Consolmagno, G. J. – Drake, M. J. (1977): Composition and evolution of the eucrite parent body: Evidence from rare elements. – Geochimica et Cosmochimica Acta, 41, 1 271–1 282. https://doi.org/10.1016/0016-7037(77)90072-2

Drake, M. J. (1979): Geochemical evolution of the eucrite parent body: Possible nature and evolution of asteroide 4Vesta. – In: Gehrels, A. M. J. (ed.): Asteroids, Univ. Arizona Press, Tuscon.

Engelhardt, W. von (1963): Der Eukrite von Stannern. – Beitrage zur Mineral und Petrography, 9, 65–94.

Gardner, K. G. – Mittlefehldt D. V. (2004): Petrology of New Stannern-trend eucrites and eucrite genesis. – Lunar and Planetary Science XXXV, abst. 1 349.

Gray, C. M. – Papanastassiou, D. A. – Wasserburg, G. J. (1973): Th e identifi cation of early condensates from the solar nebula. – Icarus 20, 213–239. https://doi.org/10.1016/0019-1035(73)90052-3

Hill, D. H. – Boynton, W. V. – Haag, R. A. (1991): A lunar meteorite outside the Antarctic. – Science 352, 614–617.

Ikeda, Y. – Takeda, H. (1985): A model for origin of basaltic achondrites based on the YAMATO – 7308 howardite. – Lunar and Planetary Science Conference, 15, 649–663.

Ireland, T. – Bukovanská, M. (1992): Zircons from the Stannern eucrite. – Abstract 55th Ann. Meet. Met. Soc. Copenhagen. Meteoritics 27, 3, 237.

Kitts, K. – Lodders, K. (1998): Survey and evaluation of eucrite bulk composition. – Meteoritics and Planet. Sci., 33, 197–213. https://doi.org/10.1111/j.1945-5100.1998.tb01334.x

Kohlík, J. (1970): Noviny dávných staletí. – Vydavatelství a nakladatelství Novinář, 108–109, Praha.

Köblitz, J. (1994): Metbase. – Elektronická databáze.

Larson, H. P. – Fink, U. (1975): Infrared spectral observation of asteroid 4Vesta. – Icarus 36, 420–427. https://doi.org/10.1016/0019-1035(75)90109-8

Mason, B. (1962): Meteorites. – John Wiley and Sons, 274, New York.

McCord, T. B. – Adams, J. B. – Johnson, T. V. (1970): Asteroid Vesta: Spectral reflectivity and compositial implications. – Science 168, 1 445–1 447.

Melosh, H. J. (1984): Impact ejection, spallation, and the origin of meteorites. – Icarus 59, 234–260. https://doi.org/10.1016/0019-1035(84)90026-5

Newsom, H. E. – Drake, M. J. (1982): The metal content of the eucrite parent body. Constraints from the partitioning behavior of tungsten. – Geochimica et Cosmochimica Acta, 46, 2 483–2 489. https://doi.org/10.1016/0016-7037(82)90371-4

Nyquist, L. E. – Reese, Y. – Wiesmann, H. – Shih, C. Y. – Takeda, H. (2001): Dating eucrite formation and metamorphism. – Antarctic meteorites, XXVI, 113–115. National Institute of Polar Research, Tokyo.

Ondra, L. (2008): Osudy stonařovských meteoritů. – Stonařovské meteority 1808–2008. Muzeum Vysočiny, 115–127.

Papike, J. J. – Graham, R. – Shearer, C. K. (1998): Lunar samples. – In: Papike, J. J. – Ribbe, P. H. (eds): Planetary Materials, The Mineralogical Society of America, Washington 4–171.

Peltán, L. (2008): Dobové ohlasy pádu meteoritů ve Stonařově a okolí 22. května 1808. – Stonařovské meteority 1808–2008. Muzeum Vysočiny, 97–114.

Pouchou, J. L. – Pichoir, F. (1985): PAP (Z) procedure for improved quantitative microanalysis. – Microbeam Analysis, 104–106.

Rose, G. (1863): Systematisches Verzeichnis der Meteoriten in den Meteoriten in den mineralogischen Museum der Universität zu Berlin. – Annalen der Physik 118, 419–423.

Schreibers, C. von (1808): Meteoritenfall zu Stannern. – Gilbert´s Annalen Der Physik, 29, 225.

Schreibers, C. von (1809): Beschreibung der mährischen Meteorsteine nach ihrem Ausseren vorzüglich der Ringe etc. – Gilbert´s Annalen Der Physik, 31, 23–71.

Stolper, E. (1977): Experimental petrology of eucrite meteorites. – Geochimica et Cosmochimica Acta, 41, 587–611. https://doi.org/10.1016/0016-7037(77)90300-3

Šimčíková, M. (2008): Achondrity HED. – Stonařovské meteority 1808–2008. Muzeum Vysočiny, 51–57.

Takeda, H. – Graham, A. L. (1991): Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust. – Meteoritics 26, 129–134. https://doi.org/10.1111/j.1945-5100.1991.tb01028.x

Takeda, H. (1997): Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta. – Meteoritics and Planet. Sci., 32, 841–853. https://doi.org/10.1111/j.1945-5100.1997.tb01574.x

Thomas, P. C. – Binzel, R. P. – Gaffey, M. J. – Storrs, A. D. – Wells, E. N. – Zellner, B. H. (1997): Impact excavation on asteroid 4Vesta: Hubble Space Telescope results. – Science 277, 1 492–1 495.

Tschermak, G. (1872): Die meteoriten von Stannern, Konstantinopol, Shergotty and Gopalpur. – Tschermak´s min. – petr. Mitth., 2, 85–87.

Yamaguchi, A. – Taylor, G. J. – Keil, K. (1996): Global crustal metamorphism of the eucrite parent body. – Icarus 124, 97–112. https://doi.org/10.1006/icar.1996.0192

Yamaguchi, A. – Barrat, J. A. – Greenwood, R. C. – Shirai, N. C. – Okamoto, C. T. – Setoyanagi, T. – Ebihara, M. – Franchi, I. A. – Bohn, M. (2009): Crustal partial melting on Vesta: Evidence from highly metamorphosed eucrites. – Geochimica et Cosmochimica Acta, 73, 23, 7 162–7 182.