Jiří Faimon, Eva Šebestová, Dominik Talla, Karel Novotný


Dissolution dynamics of synthesized xenotime was experimentally studied in a discontinuous flow–through reactor. The dissolution rate constants derived from yttrium release were determined as (1.71 ± 0.74) × 10-17 mol/m2/s in near neutral solution (pH = 5.4) and (3.77 ± 0.91) × 10-15 mol/m2/s in strongly acidic solution (pH = 1.14). Compared to the dissolution dynamics of other minerals, xenotime (1) has better stability than, e.g., quartz or even monazite under given conditions and (2) could be potentially considered as suitable collector for fixation of the radionuclides from radioactive waste.

Bibliografická citace

Faimon, J., Šebestová, E., Talla, D., & Novotný, K. (2013). DYNAMIKA ROZPOUŠTĚNÍ XENOTIMU V NEUTRÁLNÍM A KYSELÉM PROSTŘEDÍ. Geologické výzkumy na Moravě a ve Slezsku, 20(1-2). Získáno z https://journals.muni.cz/gvms/article/view/1569

Klíčová slova

discontinuous flow–through reactor; dissolution dynamics; experiment; radioactive waste; synthetic xenotime

Plný Text:


Zobrazit literaturu Skrýt literaturu

Cetiner, Z. S. – Wood, S. A.– Gammons, C. H. (2005): The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare elements phosphates from 23 to 150 °C. – Chemical Geology, 214, 147–169.

Faimon, J. (1999): Studium interakce hornina – voda. Diskontinuální průtokový reaktor. – Geologické výzkumy na Moravě a ve Slezsku v roce 1999, 136–137. Brno.

Faimon, J. (2005): Total Dynamics of Quartz–Water System at Ambient Conditions. – Aquatic Geochemistry, 11, 139–172. DOI: 10.1007/s10498-004-2880-8

Grambow, B. (2006): Nuclear waste glasses. How durable? – Elements, 2, 357–364. DOI: 10.2113/gselements.2.6.357

McCarthy, G. J. – White, W. B. – Pfoertsch, D. E. (1978): Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal. – Materials Research Bulletin, 13, 11, 1239–1245. DOI: 10.1016/0025-5408(78)90215-5

Montel, J.-M. – Glorieux, B. – Seydoux-Guillaume, A.-M. – Wirth, R. (2006): Synthesis and sintering of a monazite–brabantite solid solution ceramic for nuclear waste storage. – Journal of Physics and Chemistry of Solids, 67, 2489–2500. DOI: 10.1016/j.jpcs.2006.07.004

Oelkers, E. H. – Poitrasson, F. (2002): An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. – Chemical Geology, 191, 73–87. DOI: 10.1016/S0009-2541(02)00149-3

Seydoux-Guillaume, A.-M. – Montel, J.-M. – Bingen, B. – Bosse, V. – de Parseval, P. – Paquette, J.-L. – Janots, E. – Wirth, R. (2012): Low-temperature alteration of monazite: Fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th –Pb chronometers. – Chemical Geology, 330–331, 140–158.

Talla, D. – Beran, A. – Škoda, R. – Losos, Z. (2011): On the presence of OH defects in the zircon – type phosphate mineral xenotime (Y, REE)PO4. – American Mineralogist, 96, 1799–1808. DOI: 10.2138/am.2011.3757

Tester, J. W. – Worley, W. G. – Robinson, B. A. – Grigsby, C. O. – Feerer J. L. (1994): Correlating quartz dissolution kinetics in pure water from 25 °C to 625 °C. – Geochimica et Cosmochimica Acta, 58, 2407–2420. DOI: 10.1016/0016-7037(94)90020-5

Tropper, P. – Manning, C. E. – Harlov, D. E . (2011): Solubility of CePO4 monazite and monazite and PO4 xenotime in H2O and H2O - NaCl at 800 °C and 1GPa: Implication for REE and Y transport during high-grade metamorphis. – Chemical Geology, 282, 58–66.