Těžké minerály rozsypových ložisek zlata vázaných na khantaishirský ofiolitový komplex poblíž měst Altaj a Khaliun (jihozápadní Mongolsko)

Roč.27,č.1-2(2020)

Abstrakt

Detailed morphological and chemical studies of heavy minerals from two localities fluvial sediments in the area of the khantaishir ophiolitic complex near the towns Altai and Khaliun (Southwestern Mongolia) allowed the interpretation possible source region for the gold. The heavy mineral spectrum from the sediments near the Altai town is dominated by magnetite (32 %), chromite (27 %), epidote (11 %), apatite (6 %), and clinopyroxene (5 %). We assume that these minerals come from the ultrabasic and basic igneous rocks in the Neoproterozoic khantaishir ophiolitic complex. The relatively undeformed and three-dimensional shape of gold particles indicating short distance their transport. Rare is native gold enclosed in dolomite or quartz, which indicates that potential gold sources are listvenite. The heavy mineral spectrum from the fluvial sediments in the small creek near the Khaliun town is different. The studied sample includes magnetite (31 %), amphibole (19 %), zircon (18 %), pyrite (13 %), apatite (5 %), epidote (4 %), titanite (4 %), clinopyroxene (2 %), monazite (1 %), ilmenite (1 %), garnet (1 %), and barite (0.1 %). Large variations in the mineral composition heavy mineral spectrum indicate a wide source area which includes basic to intermediate igneous rocks Cambrian-Ordovician Ikh-Mongol Arc System and medium-grade metamorphic rocks (metapelite). The subspherical rounded shape of the gold particles indicates fluvial transport. In the case of small and geologically simple drainage area as creek near the Altai town represents heavy minerals a good tool for determination of the origin of placer gold. There is a contrast between the heavy mineral spectrum from the localities near the Altai and Khaliun towns. The shape of gold particles as well as a simple heavy mineral spectrum from sediments near the Altai indicates short transport from the limited draining area (approximately 6 km2). Gold probably originating from the ultramafic rocks (listvenite), according to associated dolomite and simple spectrum of heavy minerals. Whereas the origin of gold from the placer deposits near Khalinun remains unclear and most probably could originate from the hydrothermal veins in intermediate or basic igneous rocks (presence of barite associated with abundant pyrite).


Klíčová slova:
Heavy minerals; gold; placer deposits; transportation; Southwestern Mongolia
Reference

Abu El-Enen M., Okrusch M., Will T. (2003). Metapelitic assemblages in the Umm Zariq schists, central western Kid Belt, Sinai Peninsula, Egypt.– Neues Jahrbuch für Mineralogie Abhandlungen 178, 277–306. http://doi:10.1127/0077-7757/2003/0178-0277

Belousova E., Griffin W., O’Reilly S., Fisher N. (2002). Igneous zircon – Trace element composition as an indicator of source rock type. – Contributions Mineralogy and Petrology 143, 602–622. http://doi:10.1007/s00410-002-0364-7

Breiter K., Förster HJ., Škoda R. (2006). Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites. – The peraluminous Podlesí granite system, Czech Republic.– Lithos 88, 15–34. http://doi:10.1016/j.lithos.2005.08.011

Droop, G., T., R. (1987). A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria.– Mineralogical Magazine 51, 431–437. https://doi.org/10.1180/minmag.1987.051.361.10

Foerster H-J. (1998). The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany; Part I, The monazite-(Ce) – brabantite solid solution series. – American Mineralogist 83, 3–4, 259–272. http://doi:10.2138/am-1998-3-409

Gianola O., Schmidt MW., Jagoutz O., Rickli J., Bruguier O., Sambuu O. (2019). The Crust–Mantle Transition of the Khantaishir Arc Ophiolite (Western Mongolia). – Journal of Petrology 60, 4, 673–700 http://doi:10.1093/petrology/egz009

Gibsher, A.S., Khain, E.V., Kotov, A.B., Salnikova, E.V., Kozakov, I.K., Kovach, V.P., Yakovleva, S.Z., Fedorenko, A.M. (2001). Late Vendian age of the Han - Taishiri ophiolite complex in western Mongolia.– Russian Geology and Geophysics 42, 1110–1117.

Hansen, L. D., Dipple, G.M., Gordon, T.M., Kellett, D.A. (2005). Carbonated serpentinite (listwanite) at Alin, British Columbia – a geological analogue to carbon dioxide sequestration.– Canadian Mineralogist 43, 225–239. https://doi.org/10.2113/gscanmin.43.1.225

Hanžl, P., Guy, A., Battushig, A., Lexa, O., Schulmann, K., Kunceová, E., Hrdličková, K., Buriánek, D., Krejčí, Z., Jiang, Y., Otgonbator, D. (2019). Geology of the Gobi and Mongol Altai junction enhanced by gravity analysis – a key for understanding of the Mongolian Altaides.– Journal of Maps 16, 2, 98–107. ISSN 1744-5647. https://doi.org/10.1080/17445647.2019.1700835

Hawthorne,F.C., Oberti,R., Harlow,G.E., Maresch,W.V., Martin,R.F., Schumacher, J.C.m., Welch,M.D. (2012). IMAreport, nomenclatureoftheamphibolesupergroup.– American Mineralogist 97,2031–2048. https://doi.org/10.2138/am.2012.4276

Janoušek V., Jiang Y., Buriánek D., Schulmann K., Hanžl P., Soejono I., Kröner A., Altanbaatar B., Erban V., Lexa O., Ganchuluun T., Košler J. (2018). Cambrian – Ordovician magmatism of the Ikh-Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia).– Gondwana Research 54, 122–149 https://doi.org/10.1016/j.gr.2017.10.003

Matsumoto I., Tomurtogoo O. (2003). Petrological characteristics of the Hantaishir ophiolite complex, Altai Region, Mongolia.– coexistence of podiform chromitite and boninites.– Gondwana Research 6, 161–169. https://doi.org/10.1016/S1342-937X(05)70967-9

Matter JM., Kelemen PB. (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation.– Nature Geoscience 2, 12, 837–841. https://doi.org/10.1038/ngeo683

Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., Zussman, J., Aoki, K. (1988). Nomenclature of pyroxenes.– Mineralogical Magazine 52, 535–550. https://doi.org/10.1180/minmag.1988.052.367.15

Morton, A.C., Hallsworth, C.R. (1994). Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones.– Sedimentary Geology, 90, 241–256. https://doi.org/10.1016/0037-0738(94)90041-8

Nayak, B. R., Mohapatra, B. K. (1998). Two morphologies of pyrophanite in Mn-rich assemblages, Gangpur Group, India.– Mineralogical Magazine 62, 847–856. https://doi.org/10.1180/002646198548070

Rost R. (1956). Těžké minerály – příručka k určování těžkých minerálů ve výplavech.– Nakladatelství Československé akademie věd. pp238, Praha.

Stevens, R. E. (1944). Composition of some chromites of the Western Hemisphere.– American Mineralogist, 29, 1–34.

Zabotkin L.B. (1988). Geological and mineral resources maps of L-47-XXII, XXIII, XXIV, XXVIII, XXIX, XXX, XXXIV, XXXV, and XXXVI quadrants.– Ulaanbaatar, Mongolia, Geologic Information Center, Open - file Report 4276, scale 1:200,000 (in Russian).

Zonenshain, L.P., Kuzmin, M.I., (1978). The Khan-Taishir ophiolitic complex of western Mongolia, its petrology, origin and comparison with other ophiolitic complexes.– Contributions Mineralogy and Petrology 67, 95-109. https://doi.org/10.1007/BF00371637

Metriky

0

Crossref logo

0


377

Views

206

PDF views

171

HTML views