The Correlations between Handgrip Strength and Several Psychosomatic Features in Homo Sapiens – a Review

Vol.4,No.2(2013)

Abstract
Handgrip strength (HGS) is a very good marker of physical health, good muscle performance and an overall indicator of health status and vitality. Testosterone, as a hormone primarily responsible for secondary sexual traits development, is also strongly correlated to body strength and somatic features which represent it. It has been widely reported that testosterone correlates with aggression. However, the pathway of testosterone metabolites in specific brain regions, or cause and effect formula of testosterone level and aggression has not been satisfactorily explained. Several possible and/or partial explanations based on published experiments are discussed. Furthermore, the relation between HGS and human sexual behavior is discussed – the sexual dimorphism in HGS, the perception of male HGS by females at different stages of the menstrual cycle and the selection of a partner with respect to his fitness (as estimated by HGS which is a good indicator of testosterone level).

Keywords:
testosterone; handgrip strength; aggression; sexual behavior
References

Albert, D. J. – Jonik, R. H. – Walsh, M. L. (1992): Hormone-dependent aggression in male and female rats: experiential, hormonal, and neural foundations. Neuroscience and Biobehavioural Reviews, 16: 177-192. DOI: https://doi.org/10.1016/S0149-7634(05)80179-4

Archer, J. (1991): The influence of testosterone on human aggression. British Journal of Psychology, 82, 1–28. DOI: https://doi.org/10.1111/j.2044-8295.1991.tb02379.x

Bermond, B. – Mos, J. – Meelis, W. et al. (1982): Aggression induced by stimulation of the hypothalamus: effects of androgens. Pharmacology, Biochemistry and Behavior, 16: 145-155.

Bland, J. (2004): About Gender: Hormones is Context - Testosterone and Aggression. Retrieved from http://www.gender.org.uk/about/06encrn/63_aggrs.htm, 20.8. 2013.

Buss, A. H. (1961): The Psychology of Aggression. New York: Wiley.

Carlier, M. – Roubertoux, P. L. – Kottler, I. – Degrelle H. (1990): Y chromosome and aggression in strains of laboratory mice. Behavior Genetics, 20: 137-156.

Coccaro, E. (1996): Neurotransmitter correlates of impulsive aggression in humans. In: C., Ferris – T., Grisso (Eds). Understanding Aggressive Behaviour in Children. Annals of the New York Academy of Sciences, 794: 82-89. DOI: https://doi.org/10.1111/j.1749-6632.1996.tb32511.x

Cunha, G. R. – Cooke, P. S. – Bigsby, R. – Brody, J. R. (1991): Ontogeny of sex steroid receptors in mammals. In: M., Parker (Ed). Nuclear Hormone Receptors: Molecular Mechanisms, Cellular Functions, Clinical Abnormalities. London: Academic Press, pp. 235-268.

da Vanzo, J. P. – Chamberlain, J. K. – Garris, D. R. – Swanson, M. S. (1986): Regional [3H] testosterone uptake in the brain of isolated nonaggressive mice. Brain Research, 369: 224-230. DOI: https://doi.org/10.1016/0006-8993(86)90531-7

Duchamp-Viret, P. – Duchamp, A. (1993): GABAergic control of odorinduced activity in the frog olfactory bulb: possible GABAergic modulation of granule cell inhibition action. Neuroscience, 56: 905-914. DOI: https://doi.org/10.1016/0306-4522(93)90136-4

Earley, C. J. – Leonard, B. E. (1976): The effect of testosterone and cyproterone acetate on the concentration of gammaaminobutyric acid in brain areas of aggressive and nonaggressive mice. Pharmacology, Biochemistry and Behavior. Psychosomatics, 17: 138-142.

Edwards, D. A. (1969): Early androgen stimulation and aggressive behavior in male and female mice. Physiology and Behavior, 4: 333-338. DOI: https://doi.org/10.1016/0031-9384(69)90185-1

Fink, B. – Neave, N. – Seydel, H. (2007): Male facial appearance signals physical strength to women. American Journal of Human Biology, 19: 82–87. DOI: https://doi.org/10.1002/ajhb.20583

Frederick, D. – Haselton, F. (2007): Why is muscularity sexy? Tests of the fitness indicator hypothesis. Personality and Social Psychology Bulletin, 33: 1167-1184. DOI: https://doi.org/10.1177/0146167207303022

Gallup, A. – White, D. – Gallup, G. (2007): Handgrip strength predicts sexual behavior, body morphology, and aggression in male college students. Evolution and Human Behavior, 28: 423-429. DOI: https://doi.org/10.1016/j.evolhumbehav.2007.07.001

Greenberg, N. – Crews, D. (1983): Physiological ethology of aggression in amphibians and reptiles. In: B. Svare (Ed.), Hormones and aggressive behavior. New York: Plenum, pp. 469–506.

Guillot, P. V. – Chapouthier, G. (1996): Olfaction, GABAergic neurotransmission in the olfactory bulb, and intermale aggression in mice: modulation by steroids. Behavior Genetics, 26: 497-504. DOI: https://doi.org/10.1007/BF02359754

Guillot, P. V. – Roubertoux, P. L. – Crusio, W. E. (1994): Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Research, 660: 167-169. DOI: https://doi.org/10.1016/0006-8993(94)90852-4

Haselhuhn, M. – Wong, E. (2012): Bad to the bone: facial structure predicts unethical behavior. Proceedings of the Royal Society, 279: 571-576. DOI: https://doi.org/10.1098/rspb.2011.1193

Henderson, J. – Anglin J. (2003): Facial attractiveness predicts longevity. Evolution and Human Behavior, 24: 351-356. DOI: https://doi.org/10.1016/S1090-5138(03)00036-9

Higley, J. D. – Mehlman, P. T. – Poland, R. E. et al. (1996): CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biological Psychiatry, 40: 1067-1082. DOI: https://doi.org/10.1016/S0006-3223(95)00675-3

Chase, I. D. (1982): Dynamics of hierarchy formation: the sequential development of dominance relationships. Behavior, 80: 218-238. DOI: https://doi.org/10.1163/156853982X00364

Mazur, A. – Booth, A. (1998): Testosterone and dominance in men. Behavioral and Brain Sciences, 21, 353–397. DOI: https://doi.org/10.1017/S0140525X98001228

Mazur, A. (1983): Hormones, aggression and dominance in humans. In: B. Svare (Ed.), Hormones and aggressive behavior. New York: Plenum, pp. 563–576.

Monti-Bloch, L. – Diaz-Sanchez, V. – Jennings-White, C. – Berliner, D. L. (1998): Modulation of serum testosterone and autonomic function through stimulation of the male human vomeronasal organ (VNO) with pregna-4,20,diene-3,6-dione. Journal of Steroid Biochemistry and Molecular Biology, 65: 237-242. DOI: https://doi.org/10.1016/S0960-0760(98)00025-9

Motelica-Heino, I. – Edwards, D. A. – Roffi J. (1993): Intermale aggression in mice: does hour of castration after birth influence adult behaviour? Physiology and Behavior, 53: 1017-1019. DOI: https://doi.org/10.1016/0031-9384(93)90284-M

Moyer, K. E. (1968): Kinds of aggression and their physiological basis. Communications in Behavioural Biology, 2: 65-87.

Naftoli, F. – Garcia-Segura, L. M. – Keefe, D. et al. (1990): Estrogen effects on the synaptology and neural memebranes of the rat hypothalamic arcuate nucleus. Biology of Reproduction, 42: 21-28. DOI: https://doi.org/10.1095/biolreprod42.1.21

Persky, H. – Smith, K. D. – Basu, G. K. (1971): Relation of psychologic measures of aggression and hostility to testosterone production in man. Psychosomatic Medicine, 33, 265-277. DOI: https://doi.org/10.1097/00006842-197105000-00007

Peters, P. J. – Bronson, F. H. – Whitsett, J. M. (1972): Neonatal castration and intermale aggression in mice. Physiology and Behaviour, 8: 265-268.

Petralia, S. – Gallup, G. (2001): Effects of a sexual assault scenario on handgrip strength across the menstrual cycle. Evolution and Human Behavior, 23: 3–10. DOI: https://doi.org/10.1016/S1090-5138(01)00085-X

Rhodes, G. – Simmons, L. – Peters, M. (2005): Attractiveness and sexual behavior: Does attractiveness enhance mating success? Evolution and Human Behavior, 26: 186–201. DOI: https://doi.org/10.1016/j.evolhumbehav.2004.08.014

Rudd, B. T. – Galal, O. M. – Casey, M. D. (1968): Testosterone secretion rates in normal males and males with an XYY complement. Journal of Medical Genetics, 5: 286-288. DOI: https://doi.org/10.1136/jmg.5.4.286

Sell, A. – Cosmides, L. – Tooby, J. – Sznycer, D. – Rueden, C. – Gurven, M. (2009): Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proceedings of the Royal Society, 276: 575-584. DOI: https://doi.org/10.1098/rspb.2008.1177

Shoup, M. – Gallup, G. (2008): Men’s faces convey information about their bodies and their behavior: what you see is what you get. Evolutionary Psychology, 6 (3): 469-479. DOI: https://doi.org/10.1177/147470490800600311

Schlinger, B. A. – Callard, G. V. (1989): Aromatase activity in quail brain: correlation with aggressiveness. Endocrinology, 124: 437-443. DOI: https://doi.org/10.1210/endo-124-1-437

Schlinger, B. A. – Callard, G. V. (1990): Aromatization mediates aggressive behavior in quail. General and Comparative Endocrinology, 79: 39-53. DOI: https://doi.org/10.1016/0016-6480(90)90086-2

Simon, N. – McKenna, S. – Lu, S. – Collager-Clifford, A. (1996): Development and expression of hormonal systems regulating aggression. Annals of the New York Academy of Sciences, 794, 8–17. DOI: https://doi.org/10.1111/j.1749-6632.1996.tb32505.x

Simon, N. – Whalen, R. – Tate, M. (1985): Induction of male-typical aggression by androgens but not estrogens in adult female mice. Hormones and Behavior, 19: 204-212. DOI: https://doi.org/10.1016/0018-506X(85)90019-4

Simpkins, J. – Kalra, S. – Kalra, P. (1983): Variable effects of testosterone on dopamine activity in several microdissected regions in the preoptic area and medial basal hypothalamus. Endocrinology, 112: 665-669. DOI: https://doi.org/10.1210/endo-112-2-665

Simpson, K. (2001): The Role of Testosterone in Aggression. McGill Journal of Medicine, 6, 32-40.

Sluyter, F. – Jamot, L. – van Oortmerssen, G. A. – Crusio, W. E. (1994): Hippocampal mossy fiber distributions in mice selected for aggression. Brain Research, 646: 145-148. DOI: https://doi.org/10.1016/0006-8993(94)90068-X

Solera, C. – Núñez, M. – Gutiérrez, R. – Núñez et al. (2003): Facial attractiveness in men provides clues to semen quality. Evolution and Human Behavior, 24: 199–207. DOI: https://doi.org/10.1016/S1090-5138(03)00013-8

Stirrat, M. – Perrett, D. (2010): Valid facial cues to cooperation and trust: male facial width and trustworthiness. Psychological Science, 21: 349-354. DOI: https://doi.org/10.1177/0956797610362647

Stirrat, M. – Stulp, G. – Pollet, T. (2012): Male facial width is associated with death by contact violence: narrow-faced males are more likely to die from contact violence. Evolution and Human Behavior, 33: 551-556. DOI: https://doi.org/10.1016/j.evolhumbehav.2012.02.002

Turner, A. K. (1994): Genetic and hormonal influences on male violence. In: J. Archer (Ed.), Male violence. New York: Routledge, pp. 233–252.

van de Poll, N. E. – Taminiau, M. S. – Endert, E. – Louwerse, A. L. (1988): Gonadal steroid influence upon sexual and aggressive behaviour of female rats. International Journal of Neuroscience, 41: 271-286. DOI: https://doi.org/10.3109/00207458808990734

vom Saal, F. (1983): Models of early hormonal effects on intrasex aggression in mice. In: B. Svare (Ed.), Hormones and aggressive behavior. New York: Plenum, pp. 197–222.

Winslow, J. T. – Ellingboe, J. – Miczek, K. A. (1988): Effects of alcohol on aggressive behavior in squirrel monkeys: influence of testosterone and social context. Psychopharmacology, 95: 92-98.

Wood, R. I. – Newman, S. W. (1995): Hormonal influence on neurons of the mating behavior pathway in male hamsters. In: P., Micevych – R. P., Hammer (Eds). Neurobiological Effects of Sex Steroid Hormones. Cambridge: Cambridge University Press, 3-39.

Young, R. J. – Ismail, A. H. (1979): Prediction of serum testosterone before and after an exercise program using physiological and personality variables. Journal of Human Ergology, 8, 29-38.

Metrics

0

Crossref logo

0


743

Views

343

PDF views