GROWTH: On-line aplikace pro funkční analýzu dat postnatálního růstu výšky postavy člověka

Roč.12,č.2(2021)

Abstrakt

Sledování individuálního růstu je v pediatrické praxi vyžadováno denně a často je doprovázeno potřebou podrobnějších analýz. Analýzu lidského růstu potřebují také sportovní antropologové a výzkumníci v oblasti biologie člověka. Přínosem by tedy byla pokročilá a zároveň snadno použitelná a bezplatná aplikace, která by pediatrům, auxologům a výzkumným pracovníkům v oblasti biologie člověka umožňovala provádět hloubkovou analýzu postnatálního růstu. Aplikace GROWTH byla vyvinuta na základě pochopení biologických procesů lidského růstu a matematických přístupů, které poskytují nejvhodnější model pro individuální (longitudinální) empirická data. Aplikace je navržena tak, aby ji bylo možné používat v každodenní pediatrické praxi. Poskytuje lékařům nástroje pro sledování růstu, předpovídání dosažené výšky a diagnostiku patologických růstových vzorců. Pokročilá analýza zahrnuje odhad časování hlavních růstových milníků. Současná verze je vyvrcholením několikastupňového vývoje aplikace a je založena na metodě FPCA (funkční analýza hlavních komponent) s numerickou optimalizací. Výstupní parametry jsou snadno použitelné a zobrazují se numericky i graficky.


Klíčová slova:
tělesná výška; postnatální růst; modelování růstu; růstová křivka; funkční analýza dat
Reference

Barstow, C. – Rerucha, C. (2015): Evaluation of Short and Tall Stature in Children. American Family Physician, 92(1), p. 43–50. https://www.aafp.org/afp/2015/0701/p43.html

Beath, K. J. (2007): Infant growth modelling using a shape invariant model with random effects. Statistics in Medicine, 26(12), p. 2547–2564. https://doi.org/10.1002/sim.2718

Boas, F. (1892): The Growth of Children. Science, 19(483), p. 256. https://doi.org/10.1126/science.ns-19.483.256

Boas, F. (1930): Observations on the Growth of Children. Science, 72(1854), p. 44. https://doi.org/10.1126/science.72.1854.44

Bogin, B. (1999): Patterns of Human Growth. 2nd Edition. Cambridge: Cambridge University Press, 472 p.

Bogin, B. (2021): Patterns of Human Growth. 3rd Edition. Cambridge: Cambridge University Press, 590 p.

Bogin, B. – Hermanussen, M. – Scheffler, C. (2018): As tall as my peers ? Similarity in body height between migrants and hosts. Anthropologischer Anzeiger, 74(5), p. 365–376.

Borchers, H. W. (2021): pracma: Practical Numerical Math Functions. Online at https://CRAN.R-project.org/package=pracma

Bouchalová, M. (1987): Vývoj během dětství a jeho ovlivnění. Brněnská růstová studie. Praha: Avicenum, Zdravotnické nakladatelství, 384 p.

Charmandari, E. – Achermann, J. C. – Carel, J.-C. – Soder, O. – Chrousos, G. P. (2012): Stress Response and Child Health. Science Signaling, 5(248), p. mr1. https://doi.org/10.1126/scisignal.2003595

Cole, T. (2020): sitar: Super Imposition by Translation and Rotation Growth Curve Analysis. Online at https://CRAN.R-project.org/package=sitar

Cole, T. J. (2012a): Growth references and standards. In: Cameron, N. – Bogin, B., eds., Human growth and development, Amsterdam: Elsevier, p. 537–566. Online at http://dx.doi.org/10.1016/B978-0-12-383882-7.00021-0

Cole, T. J. (2012b): The development of growth references and growth charts. Annals of Human Biology, 39(5), p. 382–394. https://doi.org/10.3109/03014460.2012.694475

Cole, T. J. – Donaldson, M. D. C. – Ben-Shlomo, Y. (2010): SITAR—a useful instrument for growth curve analysis. International Journal of Epidemiology, 39(6), p. 1558–1566. https://doi.org/10.1093/ije/dyq115

Cole, T. J. – Pan, H. – Butler, G. E. (2014): A mixed effects model to estimate timing and intensity of pubertal growth from height and secondary sexual characteristics. Annals of Human Biology, 41(1), p. 76–83. https://doi.org/10.3109/03014460.2013.856472

Čuta, M. (2014): Modelování lidského růstu. Dynamický fenotyp. Brno: Akademické nakladatelství CERM, 107 p.

Geithner, C. A. – Woynarowska, B. – Malina, R. M. (1998): The adolescent spurt and sexual maturation in girls active and not active in sport. Annals of Human Biology, 25(5), p. 415–423. https://doi.org/10.1080/03014469800006662

Gilbert, S. F. (2012): Ecological developmental biology: environmental signals for normal animal development. Evolution & Development, 14(1), p. 20–28. https://doi.org/10.1111/j.1525-142X.2011.00519.x

Gilbert, S. F. – Epel, D. (2015): Ecological Developmental Biology. The Environmental Regulation of Development, Health and Evolution. New York: Oxford University Press Inc, 576 p.

Goldstein, H. (1986): Efficient statistical modelling of longitudinal data. Annals of Human Biology, 13(2), p. 129–141. https://doi.org/10.1080/03014468600008271

Gottfried, B. S. – Weisman, J. (1973): Introduction to Optimization Theory. Englewood Cliffs, NJ: Prentice Hall, p. 571.

Hermanussen, M., ed. (2013): Auxology. Studying Human Growth and Development. Stuttgart, Germany: Schweizerbart Science Publishers, 324 p.

Hermanussen, M. – Meigen, C. (2007): Phase variation in child and adolescent growth. The International Journal of Biostatistics, 3(1), Article 9, 14 p. https://doi.org/10.2202/1557-4679.1045

Karlberg, J. (1989): A Biologically-Oriented Mathematical Model (ICP) for Human Growth. Acta Paediatrica Suppl., 78(s350), p. 70–94. https://doi.org/10.1111/j.1651-2227.1989.tb11199.x

Karlberg, J. (1989): On the Construction of the Infancy-Childhood-Puberty Growth Standard. Acta Paediatrica 78(s356), p. 26-37. https://doi.org/10.1111/j.1651-2227.1989.tb11237.x

Kelley, C. T. (1999): Iterative Methods for Optimization. Frontiers in Applied Mathematics. Philadelphia: Society for Industrial and Applied Mathematics, 180 p.

Králík, M. – Klíma, O. – Čuta, M. – Malina, R. M. – Kozieł, S. M. – Polcerová, L. – Škultétyová, A. – Španěl, M. – Kukla, L. – Zemčík, P. (2021): Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization—Functional Principal Component Analysis and SITAR. Children, 8(10), p. 934. https://doi.org/10.3390/children8100934

Lampl, M. – Thompson, A. L. (2007): Growth chart curves do not describe individual growth biology. American Journal of Human Biology, 19(5), p. 643–653. https://doi.org/10.1002/ajhb.20707

Malina, R. M. – Coelho-e-Silva, M. J. – Martinho, D. V. – Sousa-e-Siva, P. – Figueiredo, A. J. – Cumming, S. P. – Králík, M. – Kozieł, S. M. (2021): Observed and predicted ages at peak height velocity in soccer players. PLOS ONE, 16(7), p. e0254659. https://doi.org/10.1371/journal.pone.0254659

Malina, R. M. – Kozieł, S. M. – Králik, M. – Chrzanowska, M. – Suder, A. (2021): Prediction of maturity offset and age at peak height velocity in a longitudinal series of boys and girls. American Journal of Human Biology, 33(6), p. e23551. https://doi.org/10.1002/ajhb.23551

McKeague, I. W. – López-Pintado, S. – Hallin, M. – Šiman, M. (2011): Analyzing growth trajectories. Journal of Developmental Origins of Health and Disease, 2(6), p. 322–329. https://doi.org/10.1017/S2040174411000572

Meigen, C. – Hermanussen, M. (2003): Automatic analysis of longitudinal growth data on the Website willi-will-wachsen.de. Homo, 54(2), p. 157–161. https://doi.org/10.1078/0018-442x-00067

Novák, L. – Kukla, L. – Čuta, M. (2008): Child and Adolescent Longitudinal Growth Data Evaluation Using Logistic Curve Fitting with Use of the Dynamic Phenotype Method. Scripta Medica, 81(1), p. 31–46.

Novák, L. – Kukla, L. – Zeman, L. (2007): Characteristic Differences between the Growth of Man and the other Animals. Prague Medical Report, 108(2), p. 155–166.

Nwosu, B. U. – Lee, M. M. (2008): Evaluation of short and tall stature in children. American Family Physician, 78(5), p. 597–604. https://www.aafp.org/afp/2008/0901/p597.html

Ooms, J. (2014): The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects. arXiv:1403.2805 [stat.CO]. Online at https://arxiv.org/abs/1403.2805

Pinheiro, J. – Bates, D. – DebRoy, S. – Sarkar, D. – R Core Team (2020): nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148. Online at https://CRAN.R-project.org/package=nlme

Preece, M. A. – Baines, M. J. (1978): A new family of mathematical models describing the human growth curve. Annals of Human Biology, 5(1), p. 1–24. https://doi.org/10.1080/03014467800002601

Preedy, V. R., ed. (2012): Handbook of Growth and Growth Monitoring in Health and Disease. New York: Springer-Verlag.

R Core Team (2020): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Online at https://www.R-project.org/

Ramsay, J. O. – Graves, S. – Hooker, G. (2020): fda: Functional Data Analysis. Online at https://CRAN.R-project.org/package=fda

Ramsay, J. O. – Hooker, G. – Graves, S. (2009): Functional Data Analysis with R and MATLAB. Dordrecht – Heidelberg – London – New York: Springer, 207 p.

Ramsay, J. O. – Silverman, B. W. (2002): Applied Functional Data Analysis: Methods and Case Studies. 1st Edition. New York – Berlin – Heidelberg: Springer-Verlag, 190 p.

Ramsay, J. O. – Silverman, B. W. (2005): Functional Data Analysis. 2nd Edition. New York: Springer Science+Business Media, Inc., 426 p.

Rigby, R. A. – Stasinopoulos, D. M. (2005): Generalized additive models for location, scale and shape,(with discussion). Applied Statistics, 54, p. 507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x

Roche, A. F. – Sun, S. S. (2005): Human Growth: Assessment and Interpretation. New York: Cambridge University Press, 324 p.

Sayers, A. – Baines, M. – Tilling, K. (2013): A new family of mathematical models describing the human growth curve—Erratum: Direct calculation of peak height velocity, age at take-off and associated quantities. Annals of Human Biology, 40(3), p. 298–299. https://doi.org/10.3109/03014460.2013.772655

Stout, S. A. – Espel, E. V. – Sandman, C. A. – Glynn, L. M. – Davis, E. P. (2015): Fetal programming of children’s obesity risk. Psychoneuroendocrinology, 53, p. 29–39. https://doi.org/10.1016/j.psyneuen.2014.12.009

Urbanek, S. (2013): png: Read and write PNG images. Online at https://CRAN.R-project.org/package=png

Urbanek, S. – Horner, J. (2020): Cairo: R Graphics Device using Cairo Graphics Library for Creating High-Quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG, PostScript) and Display (X11 and Win32) Output. Online at https://CRAN.R-project.org/package=Cairo

Zambrano, E. – Guzmán, C. – Rodríguez-González, G. L. – Durand-Carbajal, M. – Nathanielsz, P. W. (2014): Fetal programming of sexual development and reproductive function. Molecular and Cellular Endocrinology, 382(1), p. 538–549. https://doi.org/10.1016/j.mce.2013.09.008

Metriky

0


316

Views

194

PDF (English) views