Protein Intake in Post-Resistance Exercise Period and Muscle Hypertrophy

Vol.9,No.2(2015)

Abstract

Protein intake and resistance training are factors affecting the rate of muscle protein synthesis. Muscle hypertrophy manifests as a result of a positive protein balance between the rate of muscle protein synthesis and muscle protein breakdown. An intake of protein containing essential amino acids in a period after resistance exercise is a key prerequisite of an effective adaptation. Postprandial hyperaminoacidemia is a key factor in the effectiveness of proteosynthetic processes. The most common types of protein used in sports nutrition include milk protein, egg and soy protein. There are significant differences among them in the context of digestion and essential amino acids resorptio kinetics. Whey protein represents, due to its high content of essential amino acids and leucine is a superior source of protein and is considered an important anabolic stimulus. An amount of ~20–25 g of whey protein consumed after resistance exercise optimises conditions for muscle hypertrophy. Appropriate timing of protein intake in close proximity to the load positively affects an athletes attempt to achieve muscle hypertrophy.


Keywords:
muscle proteosynthesis; whey protein; aminoacids; leucin
References

Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W. D., Broad, E. M., … Coffey, V. G. (2013). Timing and distribu-tion of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of Physiology, 591(Pt 9), 2319–2331. https://doi.org/10.1113/jphysiol.2012.244897

Bohé, J., Low, A., Wolfe, R. R., & Rennie, M. J. (2003). Human Muscle Protein Synthesis is Modulated by Extracellular, Not Intramuscular Amino Acid Availability: A Dose-Response Study. The Journal of Physiology, 552(1), 315–324. https://doi.org/10.1113/jphysiol.2003.050674

Boirie, Y., Dangin, M., Gachon, P., Vasson, M.-P., Maubois, J.-L., & Beaufrère, B. (1997). Slow and fast dietary proteins differ-ently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences, 94(26), 14930–14935.

Breen, L., & Phillips, S. M. (2011). Skeletal muscle protein metabolism in the elderly: Interventions to counteract the „anabolic resistance” of ageing. Nutrition & Metabolism, 8, 68. https://doi.org/10.1186/1743-7075-8-68

Burke, L., & Deakin, V. (2009). Clinical Sports Nutrition, 4th Edition (4 edition). Sydney: McGraw-Hill Book Company Australia. Campbell, B., Kreider, R. B., Ziegenfuss, T., La Bounty, P., Roberts, M., Burke, D., … Antonio, J. (2007). International Society of Sports Nutrition position stand: protein and exercise. Dostupné z http://www.jissn.com/content/4/1/8

Cribb, P. J., & Hayes, A. (2006). Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Medicine and Science in Sports and Exercise, 38(11), 1918–1925. https://doi.org/10.1249/01.mss.0000233790.08788.3e

Deschenes, M. R., & Kraemer, W. J. (2002). Performance and physiologic adaptations to resistance training. American Journal of Physical Medicine & Rehabilitation / Association of Academic Physiatrists, 81(11 Suppl), S3–16. https://doi.org/10.1097/00002060-200211001-00003

Elliot, T. A., Cree, M. G., Sanford, A. P., Wolfe, R. R., & Tipton, K. D. (2006). Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Medicine and Science in Sports and Exercise, 38(4), 667–674. https://doi.org/10.1249/01

Esmarck, B., Andersen, J. L., Olsen, S., Richter, E. A., Mizuno, M., & Kjaer, M. (2001). Timing of postexercise protein intake is im-portant for muscle hypertrophy with resistance training in elderly humans. The Journal of Physiology, 535(Pt 1), 301–311. https://doi.org/10.1111/j.1469-7793.2001.00301.x

Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Volpi, E., & Rasmussen, B. B. (2009). Essential amino acid and carbohy-drate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. Journal of Applied Physiology, 106(5), 1730–1739. https://doi.org/10.1152/japplphysiol.90395.2008

Hartman, J. W., Tang, J. E., Wilkinson, S. B., Tarnopolsky, M. A., Lawrence, R. L., Fullerton, A. V., & Phillips, S. M. (2007). Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consump-tion of soy or carbohydrate in young, novice, male weightlifters. American Journal of Clinical Nutrition, 86(2), 373–381. https://doi.org/10.1093/ajcn/86.2.373

Hulmi, J. J., Lockwood, C. M., & Stout, J. R. (2010). Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition & Metabolism, 7, 51. https://doi.org/10.1186/1743-7075-7-51

Kerksick, C., Harvey, T., Stout, J., Campbell, B., Wilborn, C., Kreider, R., … Antonio, J. (2008). International Society of Sports Nutrition position stand: Nutrient timing. Journal of the International Society of Sports Nutrition, 5(1), 17. https://doi.org/10.1186/1550-2783-5-17

Kittnar, O., & Mlček, M. (2009). Atlas fyziologických regulací. Grada Publishing a. s.

Koopman, R., Wagenmakers, A. J. M., Manders, R. J. F., Zorenc, A. H. G., Senden, J. M. G., Gorselink, M., … van Loon, L. J. C. (2005). Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. American Journal of Physiology. Endocrinology and Metabolism, 288(4), E645–653. https://doi.org/10.1152/ajpendo.00413.2004

Lemon, P. W. (1998). Effects of exercise on dietary protein requirements. International Journal of Sport Nutrition, 8(4), 426–447. Mitchell, C. J., Churchward-Venne, T. A., Parise, G., Bellamy, L., Baker, S. K., Smith, K., … Phillips, S. M. (2014). Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PloS One, 9(2), e89431. https://doi.org/10.1123/ijsn.8.4.426

Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., … Phillips, S. M. (2009a). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American Journal of Clinical Nutrition, 89(1), 161–168. https://doi.org/10.3945/ajcn.2008.26401

Moore, D. R., Tang, J. E., Burd, N. A., Rerecich, T., Tarnopolsky, M. A., & Phillips, S. M. (2009). Differential stimulation of myofi-brillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. The Journal of Physiology, 587(4), 897–904. https://doi.org/10.1113/jphysiol.2008.164087

Mori, H. (2014). Effect of timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men. Journal of Physiological Anthropology, 33, 24. https://doi.org/10.1186/1880-6805-33-24

Norton, L. E., & Layman, D. K. (2006). Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. The Journal of Nutrition, 136(2), 533S–537S. https://doi.org/10.1093/jn/136.2.533S

Norton, L. E., Layman, D. K., Bunpo, P., Anthony, T. G., Brana, D. V., & Garlick, P. J. (2009). The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. The Journal of Nutrition, 139(6), 1103–1109. https://doi.org/10.3945/jn.108.103853

Norton, L. E., Wilson, G. J., Layman, D. K., Moulton, C. J., & Garlick, P. J. (2012). Leucine content of dietary proteins is a de-terminant of postprandial skeletal muscle protein synthesis in adult rats. Nutrition & Metabolism, 9, 67. https://doi.org/10.1186/1743-7075-9-67

Pennings, B., Boirie, Y., Senden, J. M. G., Gijsen, A. P., Kuipers, H., & van Loon, L. J. C. (2011). Whey protein stimulates post-prandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. The American Journal of Clinical Nutrition, 93(5), 997–1005. https://doi.org/10.3945/ajcn.110.008102

Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., & Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. The American Journal of Physiology, 273(1 Pt 1), E99–107.

Phillips, S. M., & Van Loon, L. J. C. (2011). Dietary protein for athletes: From requirements to optimum adaptation. Journal of Sports Sciences, 29(sup1), S29–S38. https://doi.org/10.1080/02640414.2011.619204

Rasmussen, B. B., Tipton, K. D., Miller, S. L., Wolf, S. E., & Wolfe, R. R. (2000). An oral essential amino acid-carbohydrate sup-plement enhances muscle protein anabolism after resistance exercise. Journal of Applied Physiology, 88(2), 386–392. https://doi.org/10.1152/jappl.2000.88.2.386

Schoenfeld, B. J. (2010). The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training: Journal of Strength and Conditioning Research, 24(10), 2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840f3

Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., & Phillips, S. M. (2009a). Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of applied physiology, 107(3), 987–992. https://doi.org/10.1152/japplphysiol.00076.2009

Tang, J. E., & Phillips, S. M. (2009). Maximizing muscle protein anabolism: the role of protein quality. Current Opinion in Clinical Nutrition and Metabolic Care, 12(1), 66–71. https://doi.org/10.1097/MCO.0b013e32831cef75

Thibaudeau, C. (2007). The Black Book of Training Secrets: Enhanced Edition (Enhanced edition). Saint-Raymond, Quebec, Canada: Francois Lepine.

Tipton, K. D., Elliott, T. A., Cree, M. G., Aarsland, A. A., Sanford, A. P., & Wolfe, R. R. (2007). Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. American Journal of Physiology – Endocrinology and Metabolism, 292(1), E71–E76. https://doi.org/10.1152/ajpendo.00166.2006

Tipton, K. D., Elliott, T. A., Cree, M. G., Wolf, S. E., Sanford, A. P., & Wolfe, R. R. (2004). Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Medicine and Science in Sports and Exercise, 36(12), 2073–2081.

Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D., & Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology – Endocrinology and Metabolism, 276(4), E628–E634. https://doi.org/10.1152/ajpendo.1999.276.4.E628

Tipton, K. D., Rasmussen, B. B., Miller, S. L., Wolf, S. E., Owens-Stovall, S. K., Petrini, B. E., & Wolfe, R. R. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American Journal of Physiology – Endocrinology and Metabolism, 281(2), E197–E206. https://doi.org/10.1152/ajpendo.2001.281.2.E197

West, D. W. D., Burd, N. A., Coffey, V. G., Baker, S. K., Burke, L. M., Hawley, J. A., … Phillips, S. M. (2011). Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. The American Journal of Clinical Nutrition, 94(3), 795–803. https://doi.org/10.3945/ajcn.111.013722

Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein syn-thesis in human muscle. The Journal of Physiology, 586 (Pt 15), 3701–3717. http://doi.org/10.1113/jphysiol.2008.153916 Zatsiorsky, V., & Kraemer, W. (2006). Science and Practice of Strength Training, Second Edition (2 edition). Champaign, IL: Human Kinetics. https://doi.org/10.1113/jphysiol.2008.153916

Metrics

0

Crossref logo

0


1011

Views

577

PDF (Čeština) views