Comparison Of Current Methods For Functional And Anaerobic Threshold Identification On A Bicycle Ergometer By Triathletes

Vol.9,No.2(2015)

Abstract

The aim of the study was to compare the current methods for identification of functional and anaerobic thresholds on bicycle ergometers by triathletes. The sample included triathletes (men), regular participants in the Czech triathlon cup (n = 10, age 35.89 ± 7.94 years, body height 181.83 ± 6.52 cm, weight 80.65 ± 6.53 kg). In the study, we compared the evaluation methods using lactate curves, respiratory parameters, theoretical calculations, motor tests and Conconi test. For statistical data processing we used the Repeated Measures. For evaluating the significance of differences between each test method the pairwise comparation was used (Bonferroni test). Results showed statistically significant differences (p = 0.000). Significantly higher values are reached in Conconi test (173 ± 14.2 beats.min–1, 313 ± 74.8 W). In pairwise comparisons of methods, there were differences between lactate and Conconi test for HR values (p = 0.037) as well as the difference between HR lactate test and theoretical calculation (p = 0.039). Most statistical variations in the watts evaluation was found in connection with Conconi test (time trial: p = 0.039; lactate test: p = 0.013; spiroergometry: p = 0.041).


Keywords:
diagnostics; endurance; triathlon; training
References

Allen H., & Coggan A. (2005). Training and rating with a power meter. VeloPress.

Bachl, N., Reiterer, W., Prokop, L., & Czitober, H. (1978). Bestimmungsmetoden der anaeroben Schwelle. Österreich Journal of Sportmedicine 8, 9–12.

Bentley, D. J., Millet, G. P., Vleck, V. E., & McNaugthon, L. R. (2002). Specific aspects of contemporary triathlon: implications for physiological analysis and performance. Sports Medicine 32 (6), 345–359. https://doi.org/10.2165/00007256-200232060-00001

Bourgois J. & Vrijens J. (1998). The Conconi test: a controversial concept for the determination of the anaerobic threshold in young rowers. International Journal of Sports Medicine 19, (8), 553–9. https://doi.org/10.1055/s-2007-971959

Brooks, G. A. (1985). Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise 17, 22–31.

Bunc, V. (1989). Biokybernetický přístup k hodnocení reakce organismu na tělesné zatížení. Praha : Univerzita Karlova.

Bunc, V., Šprýnarová, Š., Heller, J., & Zdanowicz, R. (1984). Možnosti využití anaerobního prahu ve fyziologii práce. II. Metody stanovení araerobného prahu. Pracovní lékařství 36, 127–133.

Conconi, F; Ferrari, M; Ziglio, P. G.; Droghetti P., & Codeca L. (1982). Determination of the anaerobic threshold by a noninva-sive field test in runners. Journal of applied physiology: respiratory, environmental and exercise physiology 52, (4), 869–73. https://doi.org/10.1152/jappl.1982.52.4.869

Costill, D. L. (1970). Metabolic responses during distance running. Journal of Applied Physiology 28 (3), 151–155. https://doi.org/10.1152/jappl.1970.28.3.251

Formánek, J., Horčic, J. (2003). Triatlon. Praha: Olympia, a. s.

Grasgruber, P., & Cacek, J. (2008). Sportovní geny. Brno: Computer Press a.s.

Hue, O., Le Gallais, D., Chollet, D., Boussana, A., & Préfaut, C. (2000). Ventilatory treshold and maxinal oxygen uptake in present triathletes. Canadian Journal of Applied Physiology 25, 102–113. https://doi.org/10.1139/h00-007

Máček, M. (1999). Reakce a adaptace na tělesnou zátěž. In Kučera, M., & Dylevský, I. (Ed.), Sportovní medicína. Praha: Grada.

Millet, G. P., Dreano, P., & Bentley, D. J. (2003). Physiological characteristics of elite short- and long-distance triathletes. European Journal of Applied Physiology 88, 427–30. https://doi.org/10.1007/s00421-002-0731-0

Neumann, G., Pfützner, A., & Hottenrott, K. (2000). Alles unter Kontrolle. Verlag: Meyer & Meyer Sport.

O´Toole, M. L., Douglas, P. S., & Hiller, W. B. (1989). Lactat, oxygen uptake and cycling performance in triathletes. International Journal of Sports Medicine 10, 413–418. https://doi.org/10.1055/s-2007-1024935

Schabort, E. J., Killian, S. C., St Clair Gibson, A., Hawley, J. A., & Noakes, T. D. (2000). Prediction of triathlon race time from laboratory testing in national triathletes. Medicine and Science in Sports and Exercise 32, 844–849.

Schneider, D. A., Lacroix, K. A., Atkinson, G. R., Troped, P. J., & Pollack, J. (1990). Ventilatory threshold and maximal oxygen uptake during cycling and runnig in traithletes. Medicine and Science in Sports and Exercise 22, 257–264.

Van Schuylenbergh, R., Vanden Eynde, B., & Hespel, P. (2004). Prediction of sprint triathlon performance from laboratory tests. European Journal of Applied Physiology 91, 94–99. https://doi.org/10.1007/s00421-003-0911-6

Zhou, S., Robson, J., King, M. J., & Davie, A. J. (1997). Correlations between short-course triathlon performance and physi-ological variables determined in laboratory cycle and treadmill tests. Journal of Sports Medicine and Physical Fitness 37, 122–130.

Metrics

0

Crossref logo

0


318

Views

377

PDF (Čeština) views