Rhizosphere bacterial community influence on Deschampsia antarctica È Desv. adaptability in context of temperature near plants in local spatial scales of Galindez Island, Argentine Islands (the maritime Antarctic)

Vol.14,No.1(2024)

Abstract

The effect of rhizosphere bacterial community index (Irbi) influence on the nine populations of Antarctic hair grass (Deschampsia antarctica) adaptability was studied in the Galindez Island (summer season 2017/18). Moreover, the corresponding influence indices Irbi (i=1÷9) and Irbpi (p=1÷5 for the most common bacteria) were evaluated as well. The objective was to compare the Irbi and Irbpi series with the united temperature influence index on plant populations (It1i(z)) series and the united quality latent index of adaptability Iq1i. The study used data on the rhizosphere metagenome composition based on 16S RNA analysis. Methods determining the plant number in populations, and measuring the morphometric indices of D. antarctica populations were used. Reserve and protective seed proteins spectra were studied by polyacrylamide gel electrophoresis. Method of extreme grouping the spatial variables of these indices was applied for nine populations to obtain a Iq1I and It1i and Irbi, Irbpi. Sets of united indices were compared by regression technique. A comparative statistical analysis of the It1i and Irbi, Irbpi sets in   this season was carried out. This possible influence appeared to be individual for each D. antarctica studied population. In each population, part of the plants reacted positively to the bacteria influence, while the other part either did not react or reacted negatively. Dependence of the plant adaptation indices on rhizospheric bacterial communities z(x) is shown in our data. This means that the rhizosphere bacterial community and temperature-dependent rhizosphere bacteria (x) can play an active role in plant adaptation of D. antarctica populations (z) to individual temperature conditions in the microscale of Galindez Island from a biological point of view.


Keywords:
Deschampsia antarctica; Iq1i, It1i, Irbi and Irbpi; Argentine Islands; the maritime Antarctic
References

Ahkami, A. H., White, R. A. III, Handakumbura, P. P. and Jansson, C. (2017): Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere, 3: 233-243

Ayvazyan, S. A., Buchstaber, V. M., Yenyukov, I. S. and Meshalkin, L. D. (1989): Applied statistics. Moscow, 606 p. (In Russian).

Bauman, E. V., Moskalenko, N. E. (2008): Methods of extremal grouping of the fractional parameters. Automation and Remote Control, 69: 1965-1972. doi: 10.1134/S0005117908110131

Ball, B. A., Convey, P., Feeser, K. L., Nielsen, U. N. and Van Horn, D. (2023): Habitat severity characteristics structure soil communities at regional and local spatial scales along the Antarctica Peninsula. Antarctic Science, 35(2): 103-119. doi: 10.1017/S0954102023000019

Bertini, L., Cozzolino, F., Proietti, S., Falconieri, G. S., Iacobucci, I., Salvia, R., Falabella, P., Monti, M. and Caruso, C. (2021): What antarctic plants can tell us about climate changes: Temperature as a driver for metabolic reprogramming. Biomolecules, 11(8): 1094. doi: 10.3390/biom11081094

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. and Schulze-Lefert, P. (2013): Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64: 807-838.

Cesco, S., Neumann, G., Tomasi, N., Pinton, R. and Weisskopf, L. (2010): Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil, 329: 1-25.

Gallardo-Cerda, J., Levihuan, J., Lavín, P., Oses, R., Atala, C., TorresDíaz, C., Cuba-Díaz, M., Barrera, A. and Molina-Montenegro, M. A. (2018): Antarctic rhizobacteria improve salt toleranceand physiological performance of the Antarctic vascular plants. Polar Biology, 41: 1973-1982.

Garcia, J., Kao-Kniffin, J. (2018): Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling. Frontiers in Microbiology, 9: 1516.

Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G. S., Meena, M., Seth, C. S. and Swapnil, P. (2023): Soil microbiome: Diversity, benefits and interactions with plants. Sustainability, 15: 14643. doi: 10.3390/su151914643

Glick, B. R., Cheng, Z., Czarny, J. and Duan, J. (2007): Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119: 329-339.

Hartmann, A., Schmid, M., van Tuinen, D. and Berg, G. (2009): Plant driven selection of microbes. Plant Soil, 321: 235-257.

Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M. G., Schlaeppi, K. and Erb, M. (2018): Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9: 2738.

John, U. P, Polotnianka, R. M., Sivakumaran, K. A. A., Chew, O., Mackin, L., Kuiper, M. J., Talbot, J. P., Nugent, G. D., Mautord, J., Schrauf, G. E. and Spangenberg, G. C. (2009): Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant, Cell and Environment, 32: 336-348. doi: 10.1111/j.1365-3040.2009.01925.x

Legendre, P., Fortin, M. J. and Borcard, D. (2015): Should the Mantel test be used in spatial analysis? Methods Ecology and Evolution, 6(11): 1239-1247. doi: 10.1111/2041-210X.12425

Miryuta, N., Smykla, J., Parnikoza, I. (2019a): Algorithm for the united quality latent index of the plant adaptability and its application feld in monitoring of Deschampsia antarctica È. Desv. populations. Ukrainian Antarctic Journal, 1(18): 152-168. doi: 10.33275/1727-7485

Miryuta, N., Wojciechowski, K., Parnikoza, I. (2019b): Calculation of the external factors influence indices on plants and its application to Deschampsia antarctica Ė. Desv. populations. Ukrainian Antarctic Journal, 2(19): 97-119. doi: 10.33275/1727-7485

Ozheredova, I. P., Parnikoza, I. Y., Poronnik, O. O., Kozeretska, I. A., Demidov, S. V. and Kunakh, V. A. (2015): Mechanisms of Antarctic vascular plant adaptation to abiotic environmental factors. CytolGenet (Engl Transl): 49: 139-145.

Parnikoza, I., Rozhok, A., Convey, P., Veselski, M., Esefeld, J., Ochyra, R., Mustafa, O., Braun, C., Peter, H. U., Smykla, J., Kunakh, V. A. and Kozeretska, I.A. (2018): Spread of Antarctic vegetation by the kelp gull: Comparison of two maritime Antarctic regions. Polar Biology, 41: 1143-1155.

Paterson, E., Mwafulirwa, L. (2022): Root–soil–microbe interactions mediating nutrient fluxes in the rhizosphere. In: Anil K. Sharma (eds.): Rhizosphere biology. Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India, pp. 75–90. doi: 10.1007/978-981-15-6125-2

Pollard, J. H. (2009): A Handbook of numerical and statistical techniques: With examples. Publisher: Cambridge University Press, 343 p. doi: 10.1017/CBO9780511569692

Prekrasna, Ie., Pavlovska, M., Miryuta, N., Dzhulai, A., Dykyi, E., Convey, P., Kozeretska, I., Bedernichek T. and Parnikoza, I. (2022): Antarctic hairgrass rhizosphere microbiomes: Microscale effects shape diversity, structure, and function. Microbes and Environments, 37(2): ME21069. doi: 10.1264/jsme2.ME21069

Savenets, M., Pysarenko, L., Krakovska, S., Parniroza, I. and Pishniak, D. (2023): Local temperature near native vascular plants in the Argentine Islands–Kyiv Peninsula region, Antarctic Peninsula: Annual variability and approximation using standard meteorological measurements. Polar Research, 42: 1-14. doi: 10.33265/polar.v42.8339

Sozinov, O. O. (1985): Protein polymorphism and its significance in genetics and selection. Moscow, 272 p. (In Russian).

Tchuraev, R. N. (2006a): Epigenetics: Gene and epigenetic networks in onto- and phylogeny Genetics, 42(9): 1276-1296.

Tchuraev, R. N. (2006b): General principles of organization and laws of functioning in governing gene networks. In: N. Kolchanov, R. Hofestädt, L. Milanesi (eds.): Bioinformatics of Genome Regulation and Structure II., Springer, Boston, MA. doi: 10.1007/0-387-29455-4_35

Yevchun, H., Fedchuk, A., Drohushevska, I., Pnyovska, O., Chernyshenko, M. and Parnikoza, I. (2021): The toponymy of the Argentine Islands area, the Kyiv Peninsula (West Antarctica). Ukrainian Antarctic Journal, 2: 127-157. doi: 10.33275/1727-7485.2.2021.683

Znój, A., Gawor, J, Gromadka, R., Chwedorzewska, K. J. and Grzesiak, J. (2021): Root‑associated bacteria community characteristics of Antarctic plants: Deschampsia antarctica and Colobanthus quitensis–a Comparison. Microbial Ecology, 84: 808-820. doi: 10.1007/s00248-021-01891-9

Web sources / Other sources

[1] ScionImage program: http://scion-image.software.informer.com/4.0/

Metrics

0

Crossref logo

0

web of science logo


36

Views

30

PDF views