Multi-disciplinary geoscientific expedition to Woodfjorden, NW Svalbard: Field sites, methods, and preliminary results
Vol.13,No.2(2023)
The Woodfjorden area of northern Spitsbergen (NW Svalbard) offers access to the world’s northernmost onshore thermal springs, extinct Pleistocene alkali basaltic volcanoes and Miocene flood basalts including extensive hyaloclastites. In July 2023, we undertook a 14-day international multi-disciplinary geoscientific expedition to Woodfjorden-Bockfjorden to investigate the Cenozoic geological evolution of the area. The expedition objectives spanned a wide range of scientific topics from sampling of fluids and gas in the thermal springs to constraining the lithosphere by acquiring magnetotelluric data and sampling volcanic rocks. More specifically, we have 1) conducted gas, fluid and travertine sampling at the thermal springs of Gygrekjelda, Jotunkjeldene and Trollkjeldene, 2) mapped and sampled the Quaternary volcanic centers at Sverrefjellet and Halvdanpiggen, 3) sampled the Miocene basalts of the Seidfjellet Formation along seven profiles plus the underlying Devonian sedimentary rocks, 4) acquired magnetotelluric data at 12 stations along both coasts of Woodfjorden and Bockfjorden and 5) collected extensive digital geological data (digital outcrop models and photospheres) using unmanned aerial vehicles (UAVs; also known as drones). The collected samples are currently being analyzed for, amongst others, petrology, geochemistry and geochronology. In this contribution, we report on the expedition’s background, scientific objectives and present selected preliminary results such as field parameters from the thermal springs (temperature, pH, electrical conductivity), magnetic susceptibility of volcanic rocks and digital outcrop models plus photospheres.
High Arctic; volcanism; basalt; peridotite xenoliths; hydrothermal fluids; digitalization; Svalbard
Amundsen, H., Griffin, W. and O'Reilly, S. Y. (1987): The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics, 139(3-4): 169-185. doi: 10.1016/0040-1951(87)90095-3
Amundsen, H., Griffin, W. and O'Reilly, S. Y. (1988): The nature of the lithosphere beneath northwestern Spitsbergen: xenolith evidence. NGU Special Publication, (3): 58-65.
Banks, D., Sletten, R. S., Haldorsen, S., Dale, B., Heim, M. and Swensen, B. (1998): The thermal springs of Bockfjord, Svalbard: Occurrence and major ion hydrochemistry. Geothermics, 27(4): 445-467. doi: 10.1016/S0375-6505(98)00022-4
Beka, T. I., Bergh, S. G., Smirnov, M. and Birkelund, Y. (2017a): Magnetotelluric signatures of the complex tertiary fold–thrust belt and extensional fault architecture beneath Brøggerhalvøya, Svalbard. Polar Research, 36(1): 1409586. doi: 10.1080/17518369.2017.1409586
Beka, T. I., Senger, K., Autio, U. A., Smirnov, M. and Birkelund, Y. (2017b): Integrated electromagnetic data investigation of a Mesozoic CO2 storage target reservoir-cap-rock succession, Svalbard. Journal of Applied Geophysics, 136: 417-430, doi: 10.1016/j.jappgeo. 2016.11.021
Beka, T. I., Smirnov, M., Birkelund, Y., Senger, K. and Bergh, S. G. (2016): Analysis and 3D inversion of magnetotelluric crooked profile data from central Svalbard for geothermal application. Tectonophysics, 686: 98-115. doi: 10.1016/j.tecto.2016.07.024
Betlem, P., Rodes, N., Birchall, T., Dahlin, A., Smyrak-Sikora, A. and Senger, K. (2023): The Svalbox Digital Model Database: A geoscientific window to the High Arctic. Geosphere, 19(6): 1640-1666. doi: 10.1130/GES02606.1
Betlem, P., Rodes, N., Horota, R., van Hazendonk, L. and Svalbox team (2022): Svalbox-DOM_2021-0018_Midterhuken. Data set (Zenodo). doi: 10.5281/zenodo.6040362
Burov, J. P., Zagruzina, V. (1976): Results of a determination of the absolute age of Cenozoic basic rocks of the northern part of the island of Spitsbergen (translated from Russian). Geologija Sval'barda (NIIGA, Leningrad): 139-140,
Choi, S. H., Suzuki, K., Mukasa, S. B., Lee, J.-I. and Jung, H. (2010): Lu–Hf and Re–Os systematics of peridotite xenoliths from Spitsbergen, western Svalbard: Implications for mantle–crust coupling. Earth and Planetary Science Letters, 297(1): 121-132. doi: 10.1016/j.epsl.2010.06.013
Dallmann, W. (2015): Geoscience Atlas of Svalbard. Norsk Polarinstitutt Rapportserie, 148: 292. http://hdl.handle.net/11250/2580810
Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S., Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pcelina, T. M., Steel, R. J. and Worsley, D. (1999): Lithostratigraphic Lexicon of Svalbard: Review and recommendations for nomenclature use. Norsk Polarinstitutt, Tromsø, 318 p.
Davies, N. S., Berry, C. M., Marshall, J. E. A., Wellman, C. H. and Lindemann, F.-J. (2021): The Devonian landscape factory: Plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. Journal of the Geological Society, 178(5): jgs2020-225. doi: 10.1144/jgs2020-225
Dimakis, P., Braathen, B. I., Faleide, J. I., Elverhøi, A. and Gudlaugsson, S. T. (1998): Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region. Tectonophysics, 300(1–4): 311-327. doi: 10.1016/s0040-1951(98)00245-5
Dumais, M. A., Gernigon, L., Olesen, O., Lim, A., Johansen, S. and Brönner, M. (2022): Crustal and Thermal Heterogeneities across the Fram Strait and the Svalbard Margin. Tectonics, 41(10): e2022TC007302. doi: 10.1029/2022TC007302
Dörr, N., Clift, P. D., Lisker, F. and Spiegel, C. (2013): Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies. Tectonics, 32(3): 473-486. doi: 10.1002/tect.20039
Farnsworth, W. R., Blake Jr., W., Gudmundsdottir, E. R., Ingólfsson, Ó., Kalliokoski, M. H., Larsen, G., Newton, A. J., Óladóttir, B. A. and Schomacker, A. (2020): Ocean-rafted pumice constrains postglacial relative sea-level and supports Holocene ice cap survival. Quaternary Science Reviews, 250. doi: 10.1016/j.quascirev.2020.106654
Geissler, W. H., Estrada, S., Riefstahl, F., O’Connor, J. M., Spiegel, C., Van den Boogard, P. and Klügel, A. (2019): Middle Miocene magmatic activity in the Sophia Basin, Arctic Ocean – evidence from dredged basalt at the flanks of Mosby Seamount. Arktos, 5(1): 31-48. doi: 10.1007/s41063-019-00066-8
Gjelsvik, T. (1963): Remarks on the structure and composition of the Sverrefjellet volcano, Bockfjorden, Vestspitsbergen. Norsk Polarinstitutt Årbok 1962: 50-54.
Gjermundsen, E. F., Briner, J. P., Akçar, N., Foros, J., Kubik, P. W., Salvigsen, O. and Hormes, A. (2015): Minimal erosion of Arctic alpine topography during late Quaternary glaciation. Nature Geoscience, 8(10): 789-792. doi: 10.1038/ngeo2524
Grégoire, M., Chevet, J. and Maaloe, S. (2010): Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Geological Society, London, Special Publications, 337(1): 71-86. doi: 10.1144/SP337.4
Griffin, W. L., Nikolic, N., O'Reilly, S. Y. and Pearson, N. J. (2012): Coupling, decoupling and metasomatism: Evolution of crust–mantle relationships beneath NW Spitsbergen. Lithos, 149: 115-135. doi: 10.1016/j.lithos.2012.03.003
Hammer, Ø., Dysthe, D. K. and Jamtveit, B. (2007): The dynamics of travertine dams. Earth and Planetary Science Letters, 256(1): 258-263. doi: 10.1016/j.epsl.2007.01.033
Hammer, Ø., Jamtveit, B., Benning, L. G. and Dysthe, D. K. (2005): Evolution of fluid chemistry during travertine formation in the Troll thermal springs, Svalbard, Norway. Geofluids, 5(2): 140-150. doi: 10.1111/j.1468-8123.2005.00109.x
Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Kløvjan, O. S., Larssen, G. B., Ryseth, A. E., Rønning, K., Sollid, K. and Stoupakova, A. (2011a): Chapter 17: Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In: A. M. Spencer, A. F. Embry, D. L. Gautier, A. V. Stoupakova and K. Sørensen (Eds.): Arctic Petroleum Geology. The Geological Society, London, pp. 271–281. doi: 10.1144/m35.17
Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Rønning, K., Sollid, K. and Stoupakova, A.V. (2011b): Chapter 10: Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. In: A. M. Spencer, A. F. Embry, D. L. Gautier, A. V. Stoupakova and K. Sørensen (Eds.): Arctic Petroleum Geology. The Geological Society, London, pp. 163–195. doi: 10.1144/m35.10
Iandelli, N., Coli, M., Donigaglia, T. and Ciuffreda, A. L. (2021): An unconventional field mapping application: A complete opensource workflow solution applied to lithological mapping of the coatings of cultural heritage. ISPRS International Journal of Geo-Information, 10(6): 357. doi: 10.3390/ijgi10060357
Jamtveit, B., Hammer, Ø., Andersson, C., Dysthe, D., Heldmann, J. and Fogel, M. L. (2006): Travertines from the Troll thermal springs, Svalbard. Norwegian Journal of Geology/Norsk Geologisk Forening, 86(4). https://njg.geologi.no/images/NJG_articles/B_Jamtveit_et_al.pdf
Johansen, S.E., Panzner, M., Mittet, R., Amundsen, H.E.F., Lim, A., Vik, E., Landrø, M. and Arntsen, B. (2019): Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature, 567(7748): 379-383. doi: 10.1038/s41586-019-1010-0
Jorge-Villar, S. E., Benning, L. G., Edwards, H. G. M. and AMASE team (2007): Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway. Geochemical Transactions, 8(1): 8. doi: 10.1186/1467-4866-8-8
Kelbert, A., Meqbel, N., Egbert, G. D. and Tandon, K. (2014): ModEM: A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66: 40-53. doi: 10.1016/j.cageo.2014.01.010
Kierulf, H. P., Kohler, J., Boy, J.-P., Geyman, E. C., Mémin, A., Omang, O. C., Steffen, H. and Steffen, R. (2022): Time-varying uplift in Svalbard–an effect of glacial changes. Geophysical Journal International, 231(3): 1518-1534. doi: 10.1093/gji/ggac264
Ladygin, V., Frolova, J. V. and Genshaft, Y. S. (2003): Petrophysical properties of Quaternary lavas of Spitsbergen. Russian Journal of Earth Sciences, 5(4): 291-298.
Lasabuda, A. P. E., Johansen, N. J. S., Laberg, J. S., Faleide, J. I., Senger, K., Rydningen, T. A., Patton, H., Knutsen, S.-M. and Hanssen, A. (2021): Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review. Earth-Science Reviews, 217: 1-35. doi: 10.1016/ j.earscirev.2021.103609
Lundmark, A. M., Augland, L. E. and Jørgensen, S. V. (2020): Digital fieldwork with Fieldmove - how do digital tools influence geoscience students’ learning experience in the field? Journal of Geography in Higher Education: 1-14. doi: 10.1080/03098265.2020.1712685
Minakov, A. (2018): Late Cenozoic lithosphere dynamics in Svalbard: Interplay of glaciation, seafloor spreading and mantle convection. Journal of Geodynamics, 122: 1-16. doi: 10.1016/j.jog.2018.09.009
Olaussen, S., Grundvåg, S.-A., Senger, K., Anell, I., Betlem, P., Birchall, T., Braathen, A., Dallmann, W., Jochmann, M., Johannessen, E. P., Lord, G., Mørk, A., Osmundsen, P. T., Smyrak-Sikora, A. and Stemmerik, L. (2024): Svalbard Composite Tectono-Sedimentary Element, Barents Sea. Geological Society, London, Memoirs, 57(1): M57-2021-36. doi: 10.1144/M57-2021-36
Oliva-Urcia, B., Kontny, A., Vahle, C. and Schleicher, A. M. (2011): Modification of the magnetic mineralogy in basalts due to fluid–rock interactions in a high-temperature geothermal system (Krafla, Iceland). Geophysical Journal International, 186(1): 155-174. doi: 10.1111/j.1365-246X.2011.05029.x
Polteau, S., Hendriks, B. W. H., Planke, S., Ganerød, M., Corfu, F., Faleide, J. I., Midtkandal, I., Svensen, H. S. and Myklebust, R. (2016): The Early Cretaceous Barents Sea Sill Complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 83-95. doi: 10.1016/j.palaeo.2015.07.007
Prestvik, T. (1978): Cenozoic plateau lavas of Spitsbergen – a geochemical study. Norsk Polarinstitutt Årbok 1977: 129-143.
Salvigsen, O., Høgvard, K. (1998): Gygrekjelda, a new warm spring in Bockfjorden, Svalbard. Polar Research, 17(1): 107-109. doi: 10.3402/polar.v17i1.6613
Selway, K., Smirnov, M., Beka, T., O'Donnell, J. P., Minakov, A., Senger, K., Faleide, J. I. and Kalscheuer, T. (2020): Magnetotelluric constraints on the temperature, composition, partial melt content, and viscosity of the upper mantle beneath Svalbard. Geochemistry Geophysics Geosystems, 21(5): 12. doi: 10.1029/2020GC008985
Senger, K., Betlem, P., Birchall, T., Buckley, S. J., Coakley, B., Eide, C. H., Flaig, P. P., Forien, M., Galland, O., Gonzaga, L., Jensen, M., Kurz, T., Lecomte, I., Mair, K., Malm, R. H., Mulrooney, M., Naumann, N., Nordmo, I., Nolde, N., Ogata, K., Rabbel, O., Schaaf, N. W. and Smyrak-Sikora, A. (2020): Using digital outcrops to make the high Arctic more accessible through the Svalbox database. Journal of Geoscience Education, 69(2): 123-137. doi: 10.1080/10899995.2020.1813865
Senger, K., Betlem, P., Grundvåg, S.-A., Horota, R.K., Buckley, S.J., Smyrak-Sikora, A., Jochmann, M.M., Birchall, T., Janocha, J., Ogata, K., Kuckero, L., Johannessen, R.M., Lecomte, I., Cohen, S.M. and Olaussen, S. (2021): Teaching with digital geology in the high Arctic: opportunities and challenges. Geoscience Communication, 4: 399-420. doi: 10.5194/gc-4-399-2021
Senger, K., Galland, O. (2022): Stratigraphic and Spatial extent of HALIP Magmatism in central Spitsbergen. Geochemistry, Geophysics, Geosystems: e2021GC010300. doi: 10.1029/2021GC0 10300
Senger, K., Nordmo, I. (2021): Using digital field notebooks in geoscientific learning in polar environments. Journal of Geoscience Education, 69(2): 166-177. doi: 10.1080/10899995.2020. 1725407
Senger, K., Nuus, M., Balling, N., Betlem, P., Birchall, T., Christiansen, H. H., Elvebakk, H., Fuchs, S., Jochmann, M., Klitzke, P., Midttømme, K., Olaussen, S., Pascal, C., Rodes, N., Shestov, A., Smyrak-Sikora, A. and Thomas, P. J. (2023): The subsurface thermal state of Svalbard and implications for geothermal potential. Geothermics, 111: 102702. doi: 10.1016/j.geothermics.2023.102702
Senger, K., Tveranger, J., Ogata, K., Braathen, A. and Planke, S. (2014): Late Mesozoic magmatism in Svalbard: A review. Earth-Science Reviews, 139: 123-144. doi: 10.1016/j.earscirev.2014.09.002
Skjelkvåle, B.-L., Amundsen, H. E. F., O'Reilly, S. Y., Griffin, W. L. and Gjelsvik, T. (1989): A primitive alkali basaltic stratovolcano and associated eruptive centres, Northwestern Spitsbergen: Volcanology and tectonic significance. Journal of Volcanology and Geothermal Research, 37(1): 1-19. doi: 10.1016/0377-0273(89)90110-8
Smelror, M., Larssen, G. B. (2016): Are there Upper Cretaceous sedimentary rocks preserved on Sørkapp land, Svalbard? Norwegian Journal of Geology, 96(2): 147-158. doi: 10.7850/njg96-2-05
Smirnov, M. Y., Egbert, G. D. (2012): Robust principal component analysis of electromagnetic arrays with missing data. Geophysical Journal International, 190(3): 1423-1438. doi: 10.1111/j.1365-246X.2012.05569.x
Treiman, A. H. (2012): Eruption age of the Sverrefjellet volcano, Spitsbergen Island, Norway. Polar Research, 31(17320): 1-7. doi: 10.3402/polar.v31i0.17320
Vågnes, E., Amundsen, H. E. F. (1993): Late Cenozoic uplift and volcanism on Spitsbergen: Caused by mantle convection? Geology, 21(3): 251-254. doi: 10.1130/0091-7613(1993)021<0251:LCUAVO>2.3.CO;2
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al. (2016): The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1): 1-9. doi: 10.1038/sdata.2016.18
Worsley, D. (2008): The post-Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27: 298-317. doi: 10.1111/j.1751-8369.2008.00085.x
Web sources / Other sources (date last accessed: 18.12.2023)
[1] https://vrsvalbard.com/neogene-quaternary-volcanism-and-thermal-springs/
[2] https://www.youtube.com/watch?v=VSVWSe4l9vI
[3] https://www.svalbox.no/map
[4] https://vrsvalbard.com/neogene-quaternary-volcanism-and-thermal-springs/
[5] https://www.vrsvalbard.com
[6] https://www.vrsvalbard.com/map
Copyright © 2024 Kim Senger, Peter Betlem, Anniken Helland-Hansen, Rafael Kenji Horota, Horst Kämpf, Agnes Kontny, Alexander Minakov, Sverre Planke, Sebastian Tappe, Maria Telmon, Dmitrii Zastrozhnov