Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central-European alpine habitats
Vol.8,No.2(2018)
Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.
chlorophyll fluorescence; moss; liverwort; dehydration; photosynthesis; Woodwardia radicans
Atherton, I., Bosanquet, S. and Lawley, M. (Eds.) (2010): Mosses and liverworts of Britain and Ireland – a field guide. British Bryological Society, Plymouth, 848 p.
Barták, M., Hazdrová, J., Skácelová, K. and Hájek, J. (2016): Dehydration-induced responses of primary photosynthetic processes and spectral reflectance indices in Antarctic Nostoc commune. Czech Polar Reports, 6: 87-95.
Barták, M., Hájek, J., Morkusová, J., Skácelová, K. and Košuthová, A. (2018): Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiologiae Plantarum, 40: 177-187.
Bartošková, H., Komenda, J. and Nauš, J. (1999): Functional changes of photosystem II in the moss Rhizomnium punctatum (Hedw.) induced by different rates of dark desiccation. Journal of Plant Physiology, 154: 597-604.
Bilger, W. (2014): Desiccation-Induced Quenching of Chlorophyll Fluorescence in Cryptogams. In: B. Demmig-Adams, G. Garab, W.W.Adams III, and Govindjee (Eds.): Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer Dordrecht, New York, Tokyo, Heidelberg, New York, pp. 409-420.
Csintalan, Z., Proctor, M. C. F. and Tuba, Z. (1999): Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. and Tayl. and Grimmia pulvinata (Hedw.) Sm. Annals of Botany, 84: 235-244.
Deltoro, V. I., Calatayud, A., Gimeno, C. and Barreno, E. (1998a): Water relations, chlorophyll fluorescence, and membrane permeability during desiccation in bryophytes from xeric, mesic, and hydric environments. Canadian Journal of Botany, 76: 1923-1929.
Deltoro, V. I., Calatayud, A., Gimeno, C., Abadía, A. and Barreno, E. (1998b): Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta, 207: 224-228.
Dobrovolný, P., Řezníčková, L., Brázdil, R., Krahula, L., Zahradníček, P., Hradil, M., Doleželová, M., Šálek, M., Štěpánek, P., Rožnovský, J., Valášek, H., Kirchner, K. and Kolejka, J. (2012): Klima Brna. Víceúrovňová analýza městského klimatu. 1. vyd. Brno: Masarykova univerzita, 200 p. ISBN 978-80-210-6029-6. (In Czech).
Dulai, S., Csizi, K., Sass-Gyarmati, A., Orbán, S. and Molnár, I. (2004): Combined effects of Thylakoid Energisation Level and Water Deficit on Thermal Stability of Photosystem II in a Dessication Tolerant Moss. Acta Academiae Paedagogicae Agriensis, Sectio Biologiae, XXV: 127-126.
Greenwood, G. L. (2017): Factors influencing induction of desiccation tolerance in bryophytes: redefining fundamental aspects of the organism’s relationship with the environment in xeric habitats. Ph.D. thesis, University of Nevada, Las Vegas, 118 p.
Hájek, T., Beckett, R. P. (2008): Effect of water content components on desiccation and recovery in Sphagnum mosses. Annals of Botany, 101: 165-173.
Hatanaka, R., Sugawara, Y. (2010): Development of desiccation tolerance and vitrification by preculture treatment in suspension-cultured cells of the liverwort Marchantia polymorpha. Planta, 231: 965-976.
Heber, U., Bukhov, N. G., Shuvalov, V. A., Kobayashi, Y. and Lange, O. L. (2001): Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. Journal of Experimental Botany, 52: 1999-2006.
Heber, U., Shuvalov, V. A. (2005): Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm). Photosynthesis Research, 84: 85-91.
Heber, U., Bilger, W. and Shuvalov, V. A. (2006): Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. Journal of Experimental Botany, 57: 2993-3006.
Heber, U. (2012): Conservation and dissipation of light energy in desiccation-tolerant photoautotrophs, two sides of the same coin. Photosynthesis Research, 113: 5-13.
Hill, M. O., Bell, N., Bruggeman-Nannenga, M. A., Brugués, M., Cano, M. J., Enroth, J., Flatberg, K. I., Frahm, J.-P., Gallego, M. T., Garilleti, R., Guerra, J., Hedenäs, L., Holyoak, D. T., Hyvönen, J., Ignatov, M. S., Lara, F., Mazimpaka, V., Muñoz, J. and Guerra, J. (2006): An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology, 28: 198-267.
Hu, R., Xiao, L., Bao, F., Li, X. and He, Y. (2016): Dehydration-responsive features of Atrichum undulatum. Journal of Plant Research, 129: 945-954. doi: 10.1007/s10265-016-0836-x.
Lednický, V. (1985): Climate the Praděd Mt. Šumperk, Severní Morava, 49: 44-48. (In Czech).
Marschall, M., Borbély, P. (2011): Photosynthetic responses of the desiccation intolerant Sphagnum angustifolium in relation to increasing its desiccation tolerance by exogenous ABA. Acta Biologica Szegediensis, 55: 119-121. Available: https://www2.sci.u-szeged.hu/ABS/2011/ Acta%20HP/55119.pdf.
Marschall, M., Borbély, P., Pné-Kónya, E. and Süto, S. (2018): Background processes and the components of photoprotection and regeneration under rehydration in desiccation-tolerant and desiccation-sensitive bryophytes. In: Abstract Book for the Plant Biology Europe Conference in Copenhagen, 80 p. (ISBN 978-87-996274-1-7).
Mayaba, N., Beckett, R. P., Csintalan, Z. and Tuba, Z. (2001): ABA increases the desiccation tolerance of photosynthesis in the afromontane understorey moss Atrichum androgynum. Annals of Botany, 88: 1093-1100.
Minami, A., Nagao, M., Ikegami, K., Koshiba, T., Arakawa, K., Fujikawa, S. and Takezawa, D. (2005): Cold acclimation in bryophytes: Low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 220: 414-423
Nabe, H., Funabiki, R., Kashino, Y., Koike, H. and Satoh, K. (2007): Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states. Plant and Cell Physiology, 48: 1548-1557.
Paciolla, M., Tommasi, F. (2003): The ascorbate system in two bryophytes: Brachythecium velutinum and Marchantia polymorpha. Biologia Plantarum, 47: 387-393.
Pressel, S., Ligrone, R. and Duckett, J. G. (2006): The effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum Hedw: A cytological study. Annals of Botany, 98: 67-76.
Proctor, M. C. F., Smirnoff, N. (2000): Rapid recovery of photosystems on rewetting desiccation‐tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany, 51: 1695-1704. Available: https://doi.org/10.1093/jexbot/51.351.1695.
Proctor, M. C. F., Oliver, M. J., Wood, A. J., Alpert, P., Stark, L. R., Cleavitt, N. L. and Mishler, B. D. (2007): Desiccation-tolerance in bryophytes: a review. The Bryologist, 110: 595-622.
Roháček, K., Barták, M. (1999): Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. Photosynthetica, 37(3): 339-363.
Slavov, Ch., Reus, M. and Holzwarth, A. R. (2013): Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. The Journal of Physical Chemistry B, 117 (38): 11326-11336.
Stoklasa-Wojtasz, A., Rzepka, A. and Rit, G. (2012): Responses of mosses species on environment stress factors. In: M. T. Grzesiak, A. Rzepka, T. Hura, S. Grzesiak (Eds.): Plant functioning under environmental stress. The F. Górski Institute of Plant Physiology, Polish Academy of Science, Cracow, Poland, pp. 69-83.
Tuba, Z., Csintalan, Z. and Proctor, M. C. F. (1996): Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: A baseline study at present-day concentration. New Phytologist, 133: 353-361.
Wise, M.J., Tunnacliffe. A. (2004): POPP the question: What do LEA proteins do? Trends in Plant Science, 9: 13-17.
Yamakawa, H., Fukushima, Y., Itoh, S. and Heber, U. (2012): Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation. Journal of Experimental Botany, 63: 3765-3775.
Yamakawa, H., van Stokkum, I. H. M., Heber, U. and Itoh, S. (2018): Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics. Photosynthesis Research, 135: 285-298.
Copyright © 2020 Czech Polar Reports