Limitation of photosynthetic processes in photosystem II in alpine mosses exposed to low temperatures: Response of chlorophyll fluorescence parameters

Vol.8,No.2(2018)

Abstract

In this study, we evaluated the effects of low and sub-zero temperature on the fast chlorophyll fluorescence transient (OJIP) and OJIP-derived parameters in 4 different mosses: Sphagnum girgensohnii, Polytrichum formosum, Hylocomium splendens and Pleurozium schreberi. The low temperature stress was applied on the mosses for 90 min. at 3 different temperatures (5°C, -1°C and -10°C). To investigate the effects of this stress on the functioning of photosystem II (PS II), the chlorophyll fluorescence measurements were taken at control temperature (22°C) and, after a 90 min. acclimation period, at each experimental temperature. The shape of OJIP curves and chlorophyll fluorescence parameters were found temperature-dependent in all the species. The mosses differed in their sensitivity to the stress but general trends in response to low temperature were similar. The results support the idea that S. girgensohnii is less resistant to low temperature stress than the other species. We were also interested in the K and L steps in OJIPs, representing different disorders caused by low temperature. The K-step was seen in P. formosum and P. schreberi and the L-step in H. splendens and S. girgensohnii.


Keywords:
Kautsky effect; chlorophyll fluorescence transient; OJIP; low temperature stress; K-step; L-step
References

Bartošková, H., Komenda, J. and Nauš, J. (1999): Functional changes of photosystem II in the moss Rhizomnium punctatum (Hedw.) induced by different rates of dark desiccation. Plant Physiology, 154: 597-604.

Bueno, M., Fillat, M. F., Strasser, R. J., Maldonado-Rodriguez, R., Marina, N., Smienk, H., Gomez-Moreno, C. and Barja, F. (2004): Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: Fluorescence induction studies and immunolocalization of Ferredoxin-NADP+ reductase. Environmental Science and Pollution Research International, 11: 98-106.

Burke, M., Gusta, L., Quamme, H., Weiser, C. and Li, P. (1976): Freezing and injury in plants. Annual Review Plant Physiology, 27: 507-528.

Crowe, J., Carpenter, J., Crowe, L. and Anchordoguy, T. (1990): Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology, 27(3): 219-231.

Deltoro, V., Calatayud, Á., Morales, F., Abadía, A. and Barreno, E. (1999): Changes in net photosynthesis, chlorophyll fluorescence and xanthophyll cycle interconversions during freeze-thaw cycles in the Mediterranean moss Leucodon sciuroides. Oecologia, 120(4): 499-505.

Goltsev, V.N., Kalaji, H.M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H. and Allakhverdiev, S.I. (2016): Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6): 869-893.

Guha, A., Sengupta, D. and Reddy, A.R. (2013): Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. Journal of Photochemistry and Photobiology B: Biology, 119: 71-83.

Ilík, P., Schansker, G., Kotabová, E., Váczi, P., Strasser, R. J. and Barták, M. (2006): A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochimica et Biophysica Acta, 1757: 12-20.

Kalaji, H., Guo, P. (2008): Chlorophyll fluorescence: A useful tool in barley plant breeding programs. In: A. Sánchez, S. Gutiérrez (eds.): Photochemistry Research Progress, 12: 447-471.

Kalaji, H., Bosa, K., Koscielniak, J. and Hossain, Z. (2011): Chlorophyll a Fluorescence – A usefull tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). A Journal of Integrative Biology, 15(12): 925-934.

Klos, A., Rajfur, M., Šrámek, I. and Václavek, M. (2012): Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praděd and Glacensis Euroregions (Poland and Czech Republic). Environmental Monitoring and Assessment, 184: 6765-6774.

Krahulec, F., Chytrý, M. and Härtel, H. (2007): Smilkové trávníky a vřesoviště (Calluno-Ulicetea). Nardus grasslands and heathlands. – In: Chytrý M. (ed.): Vegetace České republiky. 1. Travinná a keříčková vegetace [Vegetation of the Czech Republic. 1. Grassland and Heathland Vegetation], pp. 281–319, Academia, Praha. (In Czech).

Kučera, J., Zmrhalová, M., Shaw, B., Košnar, J., Plášek, V. and Váňa, J. (2009): Bryoflora of the selected localities of the Hrubý Jeseník Mts summit regions. Časopis Slezského zemského muzea. Série A, Vědy přírodní, Opava (A), 58: 115-167. ISSN 1211-3026 (In Czech).

Lazár, D., Ilík, P. and Nauš, J. (1997): An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures. Journal of Luminescence, 72–74: 595-596.

Liepina, L., Ievinsh, G. (2013): Potential for fast chlorophyll a fluorescence measurement in bryophyte ecophysiology. Estonian Journal of Ecology, 62: 137-149.

Liu, B. Y,, Lei, C. Y., Jin, J. H., Guan, Y. Y., Li, S., Zhang, Y. S. and Liu, W. Q. (2016): Physiological responses of two moss species to the combined stress of water deficit and elevated N deposition (II): Carbon and nitrogen metabolism. Ecology and Evolution, 6: 7596-7609.

Lovelock, C. E, Jackson, A. E., Melick, R. D. and Seppelt, R. (1995): Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiology, 109: 955-961.

Marečková, M., Barták, M. (2017): Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyll fluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum.Czech Polar Reports, 7(1):74-82.

Marečková, M., Barták, M. and Hájek, J. (2018, under review): Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum - chlorophyll fluorescence study. Polar Biology, manuscript after revision.

Mathur, S., Allakhverdiev, S. and Jajoo, A. (2011a): Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochimica et Biophysica Acta, 1807(1): 22-29.

Mathur, S., Jajoo, A., Mehta, P. and Bharti, S. (2011b): Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13: 1-6.

Oukarroum, A., Madidi, S. E., Schansker, G. and Strasser, R. J. (2007): Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60: 438-446.

Stirbet, A., Govindjee (2011): On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology. B, Biology. 104: 236-57.

Stirbet, A., Lazár, D., Kromdijk, J. and Govindjee (2018): Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56: 86-104.

Strasser, R.J., Srivastava, A. and Govindjee (1995): Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 61(1): 32-42.

Strasser, R. J. (1997): Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 52: 147-155.

Strasser, R.J., Tsimilli, M. and Srivastava, A. (2004): Analysis of the chlorophyll a fluorescence transient. In: G. C.Papageorgiou, Govindjee (eds): Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, 19: 321-362.

Táborská, M. (2013): Mountain spring bryophyte communities in the Hrubý Jeseník Mts. and the main driving environmental factors. Zprávy Vlastivědného muzea v Olomouci, 305: 31-50 (In Czech).

Tsimilli-Michael, M., Stamatakis, K. and Papageorgiou, G. C. (2009): Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. Photosynthesis Research, 99(3): 243-255.

Venkatesh, J., Upadhyaya, Ch.P., Yu, J.-W., Hemavathi, A., Kim, D. H. and Strasser, R. J. (2012): Chlorophyll a fluorescence transient analysis of transgenic potato overexpress-ing D-galacturonic acid reductase gene for salinity stress tolerance. Horticulture Environment and Biotechnology, 53: 320-328.

Zhang, Z., Li, G., Gao, H., Zhang, L., Yang, Ch., Liu, P. and Meng, Q. (2012): Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. Inbred Lines. Plos One, 7: e42936.

Ziedler, M., Banaš, M., Duchoslav, M. and Lešková, M. (2010): The impact of dwarf pine plantation on alpine plant communities in the Hrubý Jeseník Mts. Příroda, Praha, 29: 37-50 (In Czech).

Web sources / Other sources

[1] FluorPen manual, Photon Systems Instruments (PSI), Drásov, Czech Republic

http://www.psi.cz/download/document/manuals/fluorpen/FluorPen_Monitoring_Manual_2018.pdf

,

Metrics

265

Views

63

PDF views