Cop number of random k-uniform hypergraphs
EUROCOMB’23
416–424
I. Adler. Marshals, monotone marshals, and hypertree-width. J. Graph Theory, 47(4):275-296, 2004.
https://doi.org/10.1002/jgt.20025
M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics, 8(1):1-11, 1984.
https://doi.org/10.1016/0166-218X(84)90073-8
T. Andreae. On a pursuit game played on graphs for which a minor is excluded. Journal of Combinatorial Theory, Series B, 41(1):37-47, 1986.
https://doi.org/10.1016/0095-8956(86)90026-2
W. Baird and A. Bonato. Meyniel's conjecture on the cop number: a survey. J. Comb., 3(2):225-238, 2012.
https://doi.org/10.4310/JOC.2012.v3.n2.a6
B. Bollobás, G. Kun, and I. Leader. Cops and robbers in a random graph. Journal of Combinatorial Theory, Series B, 103(2):226-236, 2013.
https://doi.org/10.1016/j.jctb.2012.10.002
A. Bonato, G. Hahn, and C. Wang. The cop density of a graph. Contrib. Discrete Math., 2(2):133-144, 2007.
N. Bowler, J. Erde, F. Lehner, and M. Pitz. Bounding the cop number of a graph by its genus. SIAM J. Discrete Math., 35(4):2459-2489, 2021.
https://doi.org/10.1137/20M1312150
E. Chiniforooshan. A better bound for the cop number of general graphs. J. Graph Theory, 58(1):45-48, 2008.
https://doi.org/10.1002/jgt.20291
N. E. Clarke, S. Fiorini, G. Joret, and D. O. Theis. A note on the cops and robber game on graphs embedded in non-orientable surfaces. Graphs Comb., 30(1):119-124, 2014.
https://doi.org/10.1007/s00373-012-1246-z
P. Frankl. Cops and robbers in graphs with large girth and Cayley graphs. Discrete Applied Mathematics, 17(3):301-305, 1987.
https://doi.org/10.1016/0166-218X(87)90033-3
G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width. Journal of Computer and System Sciences, 66(4):775-808, 2003. Special Issue on PODS 2001.
https://doi.org/10.1016/S0022-0000(03)00030-8
W. B. Kinnersley. Cops and robbers is EXPTIME-complete. J. Combin. Theory Ser. B, 111:201-220, 2015.
https://doi.org/10.1016/j.jctb.2014.11.002
F. Lehner. On the cop number of toroidal graphs. J. Combin. Theory Ser. B, 151:250-262, 2021.
https://doi.org/10.1016/j.jctb.2021.06.008
L. Lu and X. Peng. On Meyniel's conjecture of the cop number. J. Graph Theory, 71(2):192-205, 2012.
https://doi.org/10.1002/jgt.20642
T. Łuczak and P. Prałat. Chasing robbers on random graphs: zigzag theorem. Random Structures Algorithms, 37(4):516-524, 2010.
https://doi.org/10.1002/rsa.20338
R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete Mathematics, 43(2):235-239, 1983.
https://doi.org/10.1016/0012-365X(83)90160-7
P. Prałat and N. Wormald. Meyniel's conjecture holds for random graphs. Random Structures Algorithms, 48(2):396-421, 2016.
https://doi.org/10.1002/rsa.20587
A. Quilliot. Jeux et pointes fixes sur les graphes. PhD thesis, Université de Paris VI, 1978.
A. Quilliot. A short note about pursuit games played on a graph with a given genus. Journal of Combinatorial Theory, Series B, 38(1):89-92, 1985.
https://doi.org/10.1016/0095-8956(85)90093-0
B. S. W. Schroeder. The copnumber of a graph is bounded by b 32 genus (G)c+3. In Categorical perspectives (Kent, OH, 1998), Trends Math., pages 243-263. Birkhäuser Boston, Boston, MA, 2001.
https://doi.org/10.1007/978-1-4612-1370-3_14
A. Scott and B. Sudakov. A bound for the cops and robbers problem. SIAM J. Discrete Math., 25(3):1438-1442, 2011.
https://doi.org/10.1137/100812963
P. Siriwong, R. Boonklurb, H. Liu, and S. Singhun. Cops and robber on cartesian products and some classes of hypergraphs. arXiv preprint arXiv:2107.11741, 2021.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Joshua Erde, Mihyun Kang, Florian Lehner, Bojan Mohar, Dominik Schmid