Phytomass and organic carbon stocks in the mountain tundra communities of the Khibiny Mountains, Murmansk Region, Russia

Vol.15,No.2(2025)

Abstract

This article presents the results of a field-measured monitoring study on the structure and productivity of two widespread community types within the mountain tundra belt of the Subarctic (Kola Peninsula, Khibiny Mountains). The data cover the period 2000 to 2023, during which the mean annual air temperature increased by 2.2°C. In 2023, the dwarf shrub community had an average aboveground phytomass of 908 g m-2 and an annual production of 128 g m-2, values 1.5–2 times higher than in the lichen community. The composition of aboveground phytomass was as follows - dwarf shrub community: 72% dwarf shrubs, 10% mosses, 18% lichens; lichen community: 32% dwarf shrubs, 6% mosses, 62% lichens. In the dwarf shrub community during the past two decades (2000–2023), the contribution of dwarf shrubs to the aboveground phytomass remained unchanged. However, a compositional change occurred: the proportion of evergreen dwarf shrubs nearly doubled, the moss component increased fivefold, while the lichen fraction decreased by a factor of 1.5. Aboveground phytomass increased by 22%, whereas annual production showed a slight decrease of 7%. The aboveground phytomass of the lichen community decreased by 15% over a twenty-year period. Its structural composition also changed: the moss contribution increased 21 times, while the proportion of lichens decreased by a factor of 1.1 in 2023. The results demonstrate a significant response of the Khibiny mountain tundra ecosystem to ongoing global warming during the study period. The rise in temperature at this stage of global climate change has led to an alteration in the structure of vegetation, namely an increased contribution of evergreen dwarf shrubs and mosses to the plant communities of the Khibiny Mountains.


Keywords:
climate change; phytomass stocks; primary production; carbon; tundra; Khibiny Mountains; Subarctic
References

Alexandrova, V. D. (1958): The experience of determining the aboveground and underground mass of plants in the Arctic tundra. Russian Botanical Journal, 43(2): 1748-1761. (In Russian).

Andreyashkina, N. I. (1971): On the methodology for determining the aboveground phytomass of shrubs and dwarf shrubs of the forest-tundra. Ecology, 2: 82-87. (In Russian).

Andreyashkina, N. I., Peshkova, N. V. (2003): On characteristics of production and destruction processes in lowland and mountain tundras of the Extreme North. Russian Journal of Ecology, 34: 98-103. (In Russian).

Anisimov, O. A., Zhiltsova, E. L. and Reneva, S. A. (2011): Estimation of critical levels of climate change influence on the natural terrestrial ecosystems on the territory of Russia. Russian Meteorology and Hydrology, 36: 723-730. (In Russian). doi: 10.3103/S1068373911110033

Arzamastsev, A. A. (1994): Unique Paleozoic Intrusions of the Kola Peninsula; KSC RAS: Apatity, Russia, pp. 1–79. (In Russian).

Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E., Jia, G., Gens, R., Pinzon, J. E., Tucker, C. J., Tweedie, C. E. and Webber, P. J. (2010): Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions, 14(8): 1-20. doi: 10.1175/2010EI315.1

Bazilevich, N. I. (1993): Biological Productivity of Ecosystems of Northern Eurasia. Moskva: Nauka, Russia, pp. 1–293. (In Russian).

Bazilevich, N. I., Titlyanova, A. A., Smirnov, V. V. and Rodin, L. E. (1978): Methods of studying the biological cycle in various natural zones. Moscow: Mysl, Russia, pp. 1–182. (In Russian).

Belonovskaya, E. A., Tishkov, A. A., Pokrovskaya, I. V., Tsarevskaya, N. G. and Tertitsky, G. M. (2016): "Greening" of the Russian Arctic and modern trends in changes in its biota. Bulletin of the Russian Academy of Sciences. Geographical Series, 3: 28-39. (In Russian). doi: 10.15356/0373-2444-2016-3-28-39

Berner, L. T., Jantz, P., Tape, K. D. and Goetz, S. J. (2018): Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters, 13 (3): 035002. doi: 10.1088/1748-9326/aaaa9a

Berner, L. T., Orndahl, K. M., Rose, M., Tamstorf, M., Arndal, M. F., Alexander, N. D., Humphreys, E. R., Loranty, M. M., Ludwig, S. M., Nyman, J., Juutinen, S., Aurela, M., Happonen, K., Mikola, J., Mack, M. C., Vankoughnett, M. R., Collen, M. J., Salmon, M. J., Jang, D., Kumar, J., Grogan, P., Danby, R. K., Scott, N. A., Olofsson, J., Siewert, M. B., Deschamp S. L., Levesque, E., Mair, V., Morneault, A. …and Goetz, S. J. (2024): The Arctic plant aboveground biomass synthesis dataset. Scientific Data, 11(1): 305-317. doi: 10.1038/s41597-024-03139-w

Billings, W. D. (1987): Carbon balance of Alaskan tundra and taiga ecosystems: Past, present and future. Quaternary Science Reviews, 6(2): 165-177. doi: 10.1016/0277-3791(87)90032-1

Bjerke, J. W., Treharne, R., Vikhamar-Schuler, D., Karlsen, S. R., Ravolainen, V., Bokhorst, S., Phoenix, G. K., Bochenek, Z. and Tømmervik, H. (2017): Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Science of the Total Environment, 599–600: 1965-1976. doi: 10.1016/j.scitotenv.2017.05.050

Bobkova, K. S., Tuzhilkina, V. V. (2001): Carbon content and caloric value of organic matter in northern forest ecosystems. Ecology, 1: 69-71. (In Russian).

Bolin, B. (1986): Requirements for a satisfactory model of the global carbon cycle and current status of modelling efforts. In: J. R. Trabalka, D. E. Reichle (eds.): The Changing Carbon Cycle. Springer New York: New York, NY, pp. 403–424. doi: 10.1007/978-1-4757-1915-4_20

Bratkov, V. V., Voronin, A. P. (2015): Meteorology and climatology. Moscow: Miigaik, Russia. pp. 1–209. (In Russian).

Brodsky, A. K., Safronova, D. V. (2017): The global ecological crisis: view through the prism of biodiversity. Biosphere, 9(1): 48-70. doi: 10.24855/biosfera.v9i1.323/www.21bs.ru

Bukvareva, E. N., Grunewald, K., Bobylev, S. N., Zamolodchikov, D., Zimenko, A. and Bastian, O. (2015): The current state of knowledge of ecosystems and ecosystem services in Russia: A status report. Ambio, 44: 491-507. doi: 10.1007/s13280-015-0674-4

Callaghan T. V., Tweedie, C. E., Åkerman, J., Andrews, C., Bergstedt, J., Butler, M. G., Christensen, T. R., Cooley, D., Dahlberg, U., Danby, R. K., Daniёls, F. J. A., De Molenaar, J. G., Dick, J., Mortensen, C. E., Ebert-May, D., Emanuelsson, U., Eriksson, H., Hedenås, H., Henry, Greg. H. R., Hik, D. S., Hobbie, J. E., Jantze, E. J., Jaspers, C., Johansson, C., Johansson, M., Johnson, D. R., Johnstone, J. F., Jonasson, C., Kennedy, C., Kenney, A. J., Keuper, F., Koh, S., Krebs, C. J., Lantuit, H., Lara, M. J., Lin, D., Lougheed, V. L., Madsen, J., Matveyeva, N., Mcewen, D. C., Myers-Smith, I. H., Narozhniy, Y. K., Olsson, H., Pohjola, V. A., Price, L. W., Rigét, F., Rundqvist, S., Sandström, A., Tamstorf, M., Van Bogaert, R., Villarreal, S., Webber, P. J. and Zemtsov, V. A. (2011): Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). Ambio, 40(6): 705-716. doi: 10.1007/s13280-011-0179-8

Chapin III, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. and Laundre, J. A. (1995): Responses of Arctic tundra to experimental and observed changes in climate. Ecology, 76(3): 694-711. doi: 10.2307/1939337

Clarke, K. R. (1993): Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18: 117-143.

Craine, J. M, Fierer, N. and Mclauchlan, K. K. (2010): Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3: 854-857. doi: 10.1038/ngeo1009

Cunliffe, A. M., Assmann, J. J., Daskalova, G. N., Kerby, J. T. and Myers-Smith, J. H. (2020): Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environmental Research Letters, 15(12): 125004. doi: 10.1088/1748-9326/aba470

Day, T. A., Ruhland, C. T. and Xiong, F. S. (2008): Warming increases aboveground plant biomass and C stocks in vascular‐plant‐dominated Antarctic tundra. Global Change Biology, 14(8): 1827-1843. doi: 10.1111/j.1365-2486.2008.01623.x

Demin, V. I. (2012): Main climatic trends on the Kola peninsula over the period of instrumental meteorological measurements. Proceedings of the Kola Science Center of the Russian Academy of Sciences. Series: Technical Sciences, 3(10): 98-110. (In Russian).

Demin, V. I., Volkov, A. V. (2017): Comparison of air temperature changes in the Khibiny and on the surrounding foothill plain. Fundamental and Applied Climatology, 3: 16-27. (In Russian). doi: 10.21513/2410-8758-2017-3-16-27

Elmendorf, S., Henry, G., Hollister, R. D., Bjork, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., … and Wipf, S. (2012): Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2: 453-457. doi: 10.1038/nclimate1465

Epstein, H. E., Calef, M., Walker, M., Chapin III, F. S. and Starfield, E. M. (2004): Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biology, 10(8): 1325-1334. doi: 10.1111/j.1365-2486.2004.00810.x

Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J. and Pinzon, J. E. (2012): Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters, 7(1): 015506. doi: 10.1088/1748-9326/7/1/015506

Epstein, H. E., Walker, D. A., Raynolds, M. K., Jia, G. J. and Kelley, A. M. (2008): Phytomass patterns across a temperature gradient of the North American arctic tundra. Journal Geophysical Research, 113: G03S02. doi: 10.1029/2007JG000555

Ermolaeva, O. V., Shmakova, N. Ju. (2020): The effect of weather conditions on annual increment of Polytrichum commune Hedw. (Polytrichaceae, Bryophyta) in the forest belt of the Khibiny Mountains (Murmansk region). Proceedings of Kola science centre of RAS, series Applied Ecology of the North, 2(11): 9-16. (In Russian). doi: 10.37614/2307-5252.2020.2.8.001

Ernakovich, J. G., Hopping, K., Berdanier, A. B., Simpson, R., Kachergis, E., Schtelzer, H. and Wallenstein, M. (2014): Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10): 3256-3269. doi: 10.1111/gcb.12568

Everett, J. T., Fitzharris, B. B. (1998): The Arctic and the Antarctic. In: R. T. Watson, M. C. Zinyowera, R. H. Moss (eds.): The Regional Impacts of Climate Change. An Assessment of Vulnerability. A Special Report of IPCC Working Group II for the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 85–103.

Frost, G V., Epstein, H. E. (2014): Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology, 20: 1264-1277. doi: 10.1111/gcb.12406

Fung, I. (1997): Climate change: A greener north. Nature, 386: 659-660. doi: 10.1038/386659a0

Golubeva, E., Plyushkyavichyute, Y., Rees, G. and Tutubalina, O. (2010): Remote sensing methods for phytomass estimation and mapping of tundra vegetation. Geography, Environment, Sustainability, 3(3): 4-13. doi: 10.24057/2071-9388-2010-3-3-4-13

Gorbunova, A. M. (2021): Monitoring of aboveground phytomass stocks in the southern tundra of Yamal. In: O. V. Yancer (eds.): Climate change and seasonal dynamics of landscapes. Ekaterinburg, pp. 204–211. (In Russian). doi: 10.26170/KFG-2021-29

Grigoriev, A. A., Shalaumova, Yu. V. and Balakin, D. S. (2021): Modern expansion of Juniperus sibirica Burgsd. in the mountain tundra of the Northern Urals. Ecology, 5: 346-353. (In Russian). doi: 10.31857/S0367059721050073

Grogan, P., Chapin III, F. S. (1999): Arctic soil respiration: Effects of climate and vegetation depend on season. Ecosystems, 2: 451-459. doi: 10.1007/s100219900093

Grogan, P., Chapin III, F. S. (2000): Initial effects of experimental warming on above- and belowground components of net ecosystems CO2-exchange in arctic tundra. Oecologia, 125(4): 512-520. doi: 10.1007/s004420000490

Henry, G. H. R., Hollister, R. D., Klanderud, K., Björk, R. G., Bjorkman, A. D., Elphinstone, C., Jónsdóttir, I. S., Molau, U., Petraglia, A., Oberbauer, S. F., Rixen, C. and Wookey, P. A. (2022): The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Science, 8(3): 550-571. doi: 10.1139/as-2022-0041

Henry, G. H. R., Molau, U. (1997): Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biology, 3: 1-9. doi: 1010.1111/j.1365-2486.1997.gcb132.x

Hill, G. B., Henry, G. H. R. (2011): Responses of high Arctic wet sedge tundra to climate warming since 1980. Global Change Biology, 17: 276-287. doi: 10.1111/j.1365-2486.2010.02244.x

Hobbie, S. E., Chapin III, F. S. (1998): The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology, 79(5): 1526-1544. doi: 10.1890/0012-9658(1998)079[1526:trotpb]2.0.co;2.

Hudson, J. M. G., Henry, G. H. R. (2009): Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology, 90(10): 2657-2663. doi: 10.1890/09-0102.1

Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. and Benson, A.-M. (2015): Twenty-five year record of changes in plant cover on tundra of North-Eastern Alaska. Arctic, Antarctic, and Alpine Research, 47(4): 785-806. doi: 10.1657/AAAR0014-097

Kurbanov, E. A., Vorobyov, O. N., Lezhnin, S. A., Gubaev, A. V. and Polevshchikova, Yu. A. (2015): Thematic mapping of vegetation cover from satellite images: validation and accuracy assessment. Yoshkar-Ola: Perm State Technical University, Russia, 126 p. (In Russian).

Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S. and Körner, Ch. (2011): Do global change experiments overestimate impacts on terrestrial ecosystems? Trends in Ecology & Evolution, 26 (5): 236-241. doi: 10.1016/j.tree.2011.02.011

Levina, V. I. (1960): Determination of the mass of annual fall in two types of pine forest on the Kola Peninsula. Russian Botanical Journal, 45(3): 418-423. (In Russian).

Manakov, K. N. (1972): Productivity and biological cycle in tundra biogeocenoses. Leningrad: Nauka, Russia, pp. 1–148. (In Russian).

Maslov, M. N., Kopeina, E. I., Zudkin, A. G., Koroleva, N. E., Shulakov, A. A., Onipchenko, V. G. and Makarov, M. I. (2016): Stocks of phytomass and organic carbon in tundra ecosystems of Northern Fennoscandia. Bulletin of Moscow University. Series: Soil Science, 3: 30-35. (In Russian). doi: 10.3103/S0147687416030042

McBean, G. A., Alekseev, G., Chen, D., Forland, E., Fyfe, J., Groisman, P. Y., King, R., Melling, H., Vose, R. and Whitfield, P. H. (2005): Arctic Climate: Past and present. In: M. Humfrey (eds.): Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, pp. 21–60.

Melillo, J. M.; Mcguire, A. D.; Kicklighter, D. W.; Moore, B.; Vorosmarty, C. J. and Schloss, A. L. (1993): Global climate change and terrestrial net primary production. Nature, 363(6426): 234-240. doi: 10.1038/363234a0

Miles, V. V., Esau, I. (2016): Spatial heterogeneity of greening and browning between and within bioclimatic zones in Northern West Siberia. Environmental Research Letters, 11(11): 115002. doi: 10.1088/1748-9326/11/11/115002

Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., Gavilán García, R., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F. J. A., Bergmeie, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminée, J. H. J., Lysenko, T., Didukh, Ya. P., Pignatti, S., Rodwell, J. S., Capelo, J., Weber, H. E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Freitag, H., Hennekens, S. M. and Tichý. L. (2016): Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(1): 3-264. doi: 10.1111/avsc.12257

Myers-Smith, I. H., Hik, D. S. (2013): Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions. Ecology and Evolution, 3(11): 3683-3700. doi: 10.1002/ece3.710

Natali, S. M., Schuur, E. A. G. and Rubin, R. L. (2012): Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology, 100(2): 488-498. doi: 10.2307/41496097

Niittynen, P., Heikkinen, R. K., Aalto, J., Guisan, A., Kemppinen, J. and Luoto, M. (2020): Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change, 10: 1143-1148. doi: 10.1038/s41558-020-00916-4

Oechel, W. C., Vourlitis, G. L., Hastings, S. J. and Bocchkarev, S. A. (1995): Change in Arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska. Ecology Applications, 5(3): 846-855. doi: 10.2307/1941992

Oksanen, J. F., Blanchet, G., Friendly M., Kindt, R., Legendre, P. and Wagner, H. (2019): Vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

Olofsson, J., Ericson, L., Torp, M., Stark, S. and Baxter, R. (2011): Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change, 1: 220-223. doi: 10.1038/nclimate1142

Rangwala, I., Miller, J. R. (2012): Climate change in mountains: a review of elevation-dependent warming and its possible causes. Climatic Change, 114(3–4): 527-547. doi: 10.1007/s10584-012-0419-3

Raynolds, M. K., Walker, D. A. (2016): Increased wetness confounds landsat-derived NDVI trends in the Central Alaska North Slope Region, 1985–2011. Environmental Research Letters, 11(8): 085004. doi: 10.1088/1748-9326/11/8/085004

Richardson, D. N. S., Finegan, E. Y. (1973): Primary production of plant communities of the Truelove Lowland, Devon Island, Canada. Lichen communities. In: L. C. Bliss, F. E. Wielgolaski (eds.): Primary production and production processes, Tundra Biome. Oslo: Edmonton, Norway, pp. 47–55.

Rixen, C., Høye, T. T., Macek, P. and Aerts, R. (2022): Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 8(3): 572-608. doi: 10.1139/as-2020-0058

Romanovsky, V. E., Smith, S. L. and Christiansen, H. H. (2010): Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost and Periglacial Processes, 21: 106-16. doi: 10.1002/ppp.689

Saccone, P., Morin, S., Baptist, F., Bonneville, J. M., Colace, M. P. and Domine, F. (2013): The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363(1–2): 215-229. doi: 10.1007/s11104-012-1307-3

Sambyla, Ch. N. (2010): Coenotic characteristic and reserves of aboveground phytomass of tundra communities in the highlands of Tyva. Kyzyl: TyvGU, Russia, pp. 1–226. (In Russian).

Schuur, E. A. G, Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O. and Osterkamp, T. E. (2009): The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459: 556-9. doi: 10.1038/nature08031

Sergienko, V. G., Konstantinov, A. V. (2016): Forecast of influence of climate change on ecosystems and natural diversity species of Russian flora and fauna biotic complexes. Proceedings of Saint-Petersburg Forestry Research Institute, pp. 29–44. (In Russian). doi: 10.21178/2079-6080.2016.2.27

Shmakova, N. Ju., Lukjanova, L. M., Bulycheva, T. M. and Kudrjavtseva, O. V. (1996): The production process in the mountain tundra communities of Khibiny. Apatity: Kola science centre of RAS, Russia, pp. 30–31. (In Russian).

Shmakova, N. Ju., Ushakova, G. I. and Kostyuk, V. I. (2008): Kola subarctic mountain tundra communities (ecophysiological aspect). Apatity: Kola Science Centre of RAS, Russia, pp. 1–167. (In Russian).

Sorensen, P. L., Clemmensen, K. E., Michelsen, A., Jonasson, S. and Ström, L. (2008): Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden. Arctic, Antarctic, and Alpine Research, 40 (1): 171-180. doi: 10.1657/1523-0430(06-114)[SORENSEN]2.0.CO;2

Speed, J. D. M., Woodin, S. J., Tømmervik, H. and Van Der Wal, R. (2010): Extrapolating Herbivore-Induced Carbon Loss across an Arctic Landscape. Polar Biology, 33(6): 789-797. doi: 10.1007/s00300-009-0756-5

Sukhareva, T. A., Ivanova, E. A., Ershov, V. V., Zenkova, I. V., Korneykova, M. V., Shtabrovskaya, I. M. and Soshina, A. S. (2023): Carbon and nitrogen content and reserves in terrestrial ecosystems of the Murmansk region. Issues of Forestry Science, 6(2): 1-75. (In Russian).

Sumina, O. I. (2017): On some aspects of monitoring the biodiversity of ecosystems of the Far North. In: Biodiversity of ecosystems of the Far North: inventory, monitoring, protection: abstracts of reports of the III All-Russian scientific conference, November 20-24, 2017, Syktyvkar, Komi Republic, Russia. Publishing House: of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, pp. 80–84. (In Russian). https://ib.komisc.ru/add/conf/tundra

Tape, K., Sturm, M. and Racine, C. (2006): The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology, 12: 686-702. doi: 10.1111/j.1365-2486.2006.01128.x

Tishkov, A. A., Belonovskaya, E. A., Vaisfeld, M. A., Glazov, P. M., Krenk, A. N. and Tertytsky, G. M. (2018): “The greening” of the tundra as a driver of the modern dynamics of arctic biota. Arctic: Ecology and Economy, 2(30): 31-44. (In Russian). doi: 10.25283/2223-4594-2018-2-31-44

Titkova, T. B., Vinogradova, V. V. (2015): Response of vegetation to changing climatic conditions in boreal and subarctic landscapes at the beginning of the 21st century. Modern Problems of Remote Sensing of the Earth from Space, 12(3): 75-86. (In Russian).

Ushakova, G. I., Shmakova, N. Yu. and Koroleva, N. E. (2003): Spatial analysis of soils, vegetation, productivity, and carbon stored in mountain tundra ecosystems, Khibiny Mountains, Russia. Polar Geography, 27(3): 210-224. doi: 10.1080/789610168

Uvarov, S. A., Lapina, A. M. and Lavrinenko, O. V. (2021): Phytomass of lichens and green plants in the East European tundra communities. Plant Resources, 57(1): 15-38. (In Russian). doi: 10.31857/S0033994621010118

Verbyla, D. (2008): The greening and browning of Alaska based on 1982–2003 satellite data. Global Ecology and Biogeography, 17: 547-555. doi: 10.1111/j.1466-8238.2008.00396.x

Verbyla, D. (2015): Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environmental Research Letters, 10(12): 125016. doi: 10.1088/1748-9326/10/12/125016

Vickers, H., Høgda, K. A., Solbø, S., Karlsen, S. R., Tømmervik, H., Aanes, R. and Hansen, B. B. (2016): Changes in Greening in the High Arctic: Insights from a 30 Year AVHRR Max NDVI Dataset for Svalbard. Environmental Research Letters, 11(10): 105004. doi: 10.1088/1748-9326/11/10/105004

Wahren, C-H., Walker, M. D. and Bret-Harte, M. S. (2005): Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Global Change Biology, 11: 537-552. doi: 10.1111/j.1365-2486.2005.00927.x

Walker, D. A., Epstein, H. E., Raynolds, M. K., Kuss, P., Kopecky, M. A., Frost, G. V., Daniëls, F. J. A., Leibman, M. O., Moskalenko, N. G., Matyshak, G. V., Khitun, O. V., Khomutov, A. V., Forbes, B. C., Bhatt, U. S., Kade, A. N., Vonlanthen, C. M. and Tichý, L. (2012): Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters, 7(1): 015504. doi: 10.1088/1748-9326/7/1/015504

Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J., Melnikov, E. S., Moskalenko, N. G., Talbot, S. S. and Yurtsev, B. A. (2005): The other members of the cavm team. The circumpolar arctic vegetation map. Journal of Vegetation Science, 16(3): 267-282. doi: 10.1111/j.1654-1103.2005.tb02365.x

Walker, M. D., Walker, D. A., Welker, J. M., Arft, A. M., Bardsley, T., Brooks, P. D., Fhanestock, J. T., Jones, M. H., Losleben, M., Parsons, A. N., Seastedt, T. R. and Turner, P. H. (1999): Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrological Processes, 13(14–15): 2315-2330. doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2315:AID-HYP888>3.0.CO;2-A

Westhoff, V., Van Der Maarel, E. (1973): The braun-blanquet approach. In: R. H. Whittaker (eds.): Ordination and Classification of Communities. Springer Netherlands: Dordrecht, pp. 617–726. doi: 10.1007/978-94-010-2701-4_20

Xu, L., Myneni, R. B., Chapin III, F. S., Callaghan, T. V., Pinzon, J. E., Tucker, C. J., Zhu, Z., Bi, J., Ciais, P., Tømmervik, H., Euskirchen, E. S., Forbes, B. C., Piao, S. L., Anderson, B. T., Ganguly, S., Nemani, R. R., Goetz, S. J., Beck, P. S. A., Bunn, A. G., Cao, C. and Stroeve, J. C. (2013): Temperature and vegetation seasonality diminishment over Northern Lands. Nature Climate Change, 3(6): 581-586. doi: 10.1038/nclimate1836

Zamolodchikov, D. G. (2011): Assessment of climatogenic changes in the diversity of tree species based on forest fund inventory data. Advances in Modern Biology, 131(4): 382-392. (In Russian).

Zhang, Y. Q., Welker, J. M. (1996): Tibetan Alpine tundra responses to simulated changes in climate: Aboveground biomass and community responses. Arctic and Alpine Research, 28(2): 203-209. doi: 10.1080/00040851.1996.12003167

Zona, D., Lafleur, P. M., Hufkens, K., Gioli, B., Bailey, B., Burba, G., Euskirchen, E. S., Watts, J. D., Arndt, K. A., Farina, M., Kimball, J. S., Heimann, M., Göckede, M., Pallandt, M., Christensen, T. R., Mastepanov, M., López-Blanco, E., Dolman, A. J., Commane, R., Miller, Ch. E., Hashemi, J., Kutzbach, I., Holl, D., Boike, J., Will, C., Sachs, T., Kalhori, A., Humphreys, E. R., Sonnentag, O., Meyer, G., Gosselin, G. H., Marsh, P. and Oechel, W. C. (2023): Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity. Global Change Biology, 29(5): 1267-1281. doi: 10.1111/gcb.16487

Zyuzin, Yu. L. (2006): The severe face of Khibiny. Murmansk: Advertising Polygraphy, Russia, pp. 1–235. (In Russian).

Metrics

0

Crossref logo

0


0

Views

0

PDF views