Limitation of visibility on the coast of the Kara Sea in the context of modern climate change
Vol.15,No.2(2025)
An analysis of standard meteorological observations of horizontal visibility was performed, based on instrumental and visual observations at two Russian meteorological stations located on the southern coast of the Kara Sea. Horizontal visibility is an important navigation criterion for choosing safe routes and speeds along the Northern Sea Route. A decrease in horizontal visibility to less than 50 m is a dangerous weather event. The study of the conditions for the occurrence of such a dangerous phenomenon has become especially relevant when using giant ice-class tankers, the length of which reaches 300 m. The analysis showed that the frequency (probability) of unfavorable conditions for horizontal visibility has a pronounced seasonal variation. A relationship was found between the increase in frequency and changing climatic conditions, namely an increase in frequency against the background of modern global warming which is expressed both in a steady increase in surface air temperature in all seasons of the year and in a reduction of sea ice cover in the summer.
Arctic; climate change; hazardous weather; visibility
Alekseev, G. V., Aleksandrov, E. I., Glok, N. I., Ivanov, N. E., Smolyanitsky, V. M., Kharlanenkova, N. E. and Yulin, A. V. (2015): Arctic sea ice cover in connection with climate change. Izvestiya, Atmospheric and Oceanic Physics, 2: 5-19. (In Russian). doi: 10.7868/S0205961415020025
Alexeev, V. A., Ivanov, V. V., Kwok, R. and Smedsrud, L.-H. (2013): North Atlantic warming and declining volume of Arctic sea ice. The Cryosphere Discussions, 7: 245-265 doi: 10.5194/tcd-7-245-2013
Asbjørnsen, H., Årthun, M., Skagseth, Ø. and Eldevik, T. (2020): Mechanisms underlying recent Arctic atlantification. Geophysical Research Letters, 47: e2020GL088036. doi: 10.1029/2020GL088036
Ashik, I. M. (ed.) (2021): Seas of the Russian Arctic in modern climatic conditions [Morya Rossijskoj Arktiki v sovremennyh klimaticheskih usloviyah]. Saint Petersburg, AANII, 360 p. (In Russian).
Bryazgin, N. N., Dementyev, A. A. (1996): Dangerous meteorological phenomena in the Russian Arctic [Opasnye meteorologicheskie javlenija v rossijskoj Arktike]. Saint-Petersburg, Gidrometeoizdat, 156 p. (In Russian).
Demidov, A. B., Borisenko, G. V., Artemiev, V. A., Polukhin, A. A., Eremeeva, E. V. and Flint, M. V. (2024): Primary production in the bays of the Novaya Zemlya archipelago (Kara Sea) in the contrasting glacial and non-glacial environmental conditions. Marine Environmental Research, 199: 106620. doi: 10.1016/j.marenvres.2024.106620
Ilyushchenkova, I. A., Korzhikov, A. Ya. and Ivanov, B. V. (2023): Some patterns of formation of extreme surface air temperature in the area of the Spitzbergen (Svalbard) archipelago during the cold period. Arctic and Antarctic Research, 69(2): 141-156. (In Russian). doi: 10.30758/0555-2648-2023-69-2-141-156
Ivanov, B. V. (2019): Comparing the «earlier» and the «modern» warming in West Arctic on example of Svalbard. IOP Conference Series: Earth and Environmental Science. Turbulence, Atmosphere and Climate Dynamics, 231: 012023 doi: 10.1088/1755-1315/231/1/012023
Isaksen K., Nørdli, Ø., Ivanov, B., Køltzow, M. A., Aaboe, S., Gjelten, H. M., Mezghani, A., Eastwood, S., Førland, E. J., Benestad, R. E., Hanssen-bauer, I., Brækkan, R., Sviashchennikov, P., Demin, V., Revina, A. and Karandasheva, T. (2022): Exceptional warming over the Barents area. Scientific Reports, 12: 9371. doi: 10.1038/s41598-022-13568-5
Karandasheva, T. K., Ivanov, B. V., Demin, V. I., Revina, A. D., Ilyushchenkova, I. A. and Antsiferova, A. R. (2024): Current trends in surface air temperature changes in the Barents and Kara Seas region. Russian Arctic, 6(3): 55-64. (In Russian). doi: 10.24412/2658-4255-2024-3-55-64
Karandasheva, T. K., Demin, V. I., Ivanov, B. V. and Revina, A. D. (2021): Air temperature changes in Barentsburg (Svalbard) in XX - XXI centuries. Justification for introducing a new climate standard. Russian Arctic, 13: 26-39. (In Russian). doi: 10.24412/2658-4255-2021-2-26-39
Kohnemann, S. H. E, Heinemann, G., Bromwich, D. H. and Gutjahr, O. (2017): Extreme warming in the Kara Sea and Barents Sea during the winter period 2000–16. Journal of Climate, 30: 8913-8927. doi: 10.1175/JCLI-D-16-0693.1
Liu, Y., Zhang, J. (2025): Conductive heat flux over Arctic sea ice from 1979 to 2022. Journal of Geophysical Research: Oceans, 130: e2024JC022062. doi: 10.1029/2024JC022062
Mironov, E. U. (ed). (2010): Dangerous ice phenomena for shipping in the Arctic [Opasnye ledovye yavleniya dlya sudohodstva v Arktike]. Saint Petersburg, AANII, 320 p. (In Russian).
Mokhov, I. I., Semenov, V. A. (eds.) (2022): Arctic climate: Processes and changes [Klimat Arktiki: processy i izmenenija]. Moscow. Physics book. 360 p. (In Russian).
Prokhorova, U., Alekseev, G. and Vyasilova, A. (2023): Regional and remote influence on the sea ice in the Kara Sea. Journal of Marine Science and Engineering, 11(2): 254. doi: 10.3390/jmse11020254
Przybylak, R. (2000): Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic. Journal of Climatology, 20(6): 587-614. doi: 10.1002/(SICI)1097-0088(200005)20:6<587::AID-JOC480>3.0.CO;2-H
Rostov, I. D., Dmitrieva, E. V., Rudykh, N. I. and Vorontsov, A. A. (2019): Climatic changes of thermal condition in the Kara sea at last 40 years. Arctic and Antarctic Research, 65(2):125-147. (In Russian). doi: 10.30758/0555-2648-2019-65-2-125-147
Serreze, M. C., Francis, J. A. (2006): The arctic amplification debate. Climate Change, 76(3-4): 241-264. doi: 10.1007/s10584-005-9017-y
Shu, Q., Wang, Q., Årthun, M., Wang, Sh., Song, Zh., Zhang, M. and Qiao, F. (2022): Arctic ocean amplification in a warming climate in CMIP6 models. Science Advences, 8: eabn9755. doi: 10.1126/sciadv.abn9755
Sviashchennikov, P. N., Prokhorova, U. V. and Ivanov, B. V. (2020): Comparison of atmospheric circulation in the area of the Spitsbergen archipelago during the warming of 1920-1950 and in the modern period [Sravnenie atmosfernoj cirkuljacii v rajone arhipelaga Shpicbergen vo vremja poteplenija 1920–1950 gg. i v sovremennyj period]. Meteorology and Hydrology, 1: 36-44. (In Russian).
Sviashchennikov, P., Drugorub, A. (2022): Long-term trends in total cloud cover in the Arctic based on surface observations in 1985–2020. Bulletin of Geography. Physical Geography Series, 22: 33-43. doi: 10.12775/bgeo-2022-0003
Surkova, G. V., Romanenko, V. A. (2021): Climate change and heat exchange between atmosphere and ocean in the Arctic based on data from the Barents and Kara sea. Arctic and Antarctic Research, 67(3): 280-292. (In Russian). doi: 10.30758/0555-2648-2021-67-3-280-292
Yamagami, Y., Watanabe, M., Mori, M. and Ono, J. (2022): Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream. Nature Communications, 13(1): 3767. doi: 10.1038/s41467-022-31117-6
Web sources / Other sources
[1] RIHMI-WDC (All-Russia Research Institute of Hydrometeorological Information - World Data Center): http://meteo.ru/
Copyright © 2026 Pavel Sviashchennikov, Boris Ivanov, Anastasiia Revina, Tatiana Karandasheva, Irina Ilyushchenkova