Antiviral activity of Colobanthus quitensis (Kunth) Bartl. natural plant extract against transmissible gastroenteritis coronavirus in vitro

Vol.15,No.2(2025)

Abstract

The primary goal of our study was to investigate the antiviral potential of natural extract of unique aboriginal Antarctic plant Colobanthus quitensis. The aqueous-ethanolic extract was assessed in vitro using MDСK (Madin-Darby Canine Kidney) and PEK (Porcine Embryonic Kidney) cell cultures, challenged with Porcine Coronavirus (TGEV). The observed antiviral properties were juxtaposed with those of synthetic flavonoid compounds, namely apigenin and luteolin. Ultimately, the data show that C. quitensis extracts exhibit in vitro potent antiviral activity against TGEV coronavirus. The composition of natural C. quitensis extracts was investigated using MALDI mass spectrome-try method.


Keywords:
Colobunthus quitensis extracts; antiviral activity; polyphenolic compounds; flavonoids; MALDI mass spektrometry
References

Bascuñán-Godoy, L., Uribe, E., Zúñiga-Feest, A., Corcuera, L. and Bravo, L. (2006): Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biology, 29: 1011-1017. doi: 10.1007/s00300-006-0144-3

Bravo, L. A., Ulloa, N., Zúñiga, G. E., Casanova, A., Corcuera, L. J. and Alberdi, M. (2001): Cold resistance in Antarctic angiosperms. Physiologia Plantarum, 111: 55-65. doi: 10.1034/j.1399-3054.2001.1110108.x

Chojnacka, K., Skrzypczak, D., Izydorczyk, G., Mikula, K., Szora, D. and Witek-Krowiak, A. (2021): Antiviral properties of polyphenols from plants. Foods, 10: 2277. doi: 10.3390/foods10102277

Contreras, R. A., Pizarro, M., Köhler, H., Zamora, P. and Zúñiga, G. E. (2019): UV-B shock induces photoprotective flavonoids but not antioxidant activity in Antarctic Colobanthus quitensis (Kunth) Bartl. Environmental and Experimental Botany, 159: 179-190. doi: 10.1016/j.envexpbot.2018.12.022

Contreras, R. A., Sepúlveda, K. and Zúñiga, G. E. (2025): Production of phenolic compounds in Colobanthus quitensis Kunth (Bartl.) through cultivation in a temporary immersion bioreactor. Journal of Natural Products and Resources, 10(1): 299-301. doi: 10.30799/jnpr.114.25100101

Dai, J., Jiang, X., da Silva-Júnior, E. F., Du, S., Liu, X. and Zhan, P. (2024): Recent advances in the molecular design and applications of viral RNA-targeting antiviral modalities. Drug Discovery Today, 29(8): 104074. doi: 10.1016/j.drudis.2024.104074

Du, S., Hu, X., Menéndez-Arias, L., Zhan, P. and Liu, X. (2024): Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resistance Updates, 73: 101053. doi: 10.1016/j.drup.2024.101053

Edwards, J. A. (1975): Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. VII. Cyclic changes related to age in Colobanthus quitensis. British Antarctic Survey Bulletin, 40: 1-6.

Fowbert, J. A., Lewis-Smith, R. I. (1994): Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic and Alpine Research, 26(3): 290-296.

Iketani, S., Mohri, H., Culbertson, B., Hong, S. J., Duan, Y., Luck, M. I., Annavajhala, M. K., Guo, Y., Sheng, Z., Uhlemann, A.-C., Goff, S. P., Sabo, Y. H., Chavez, A. and Ho, D. D. (2023): Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 613: 558-564. doi: 10.1038/s41586-022-05514-2

Ivannikov, R., Anishchenko, V., Poronnik, O., Myryuta, G., Miryuta, N., Boyko, O., Hrytsak, L. and Parnikoza, I. (2023): Bioactive substances of Colobanthus quitensis (Kunth) Bartl. from the Darboux and Lagotellerie Islands, western coast of Antarctic Peninsula. Ukrainian Antarctic Journal, 21(1): 90-102. doi: 10.33275/1727-7485.1.2023.710

Laguta, I., Stavinskaya, O., Kuzema, P., Anishchenko, V., Ivannikov, R., Poronnik, O. and Parnikoza, I. (2024): Study on the composition and antioxidant properties of extracts from Colobanthus quitensis plants originating from the regions of the South Shetland Islands, Danco Coast and Graham Coast. Reports of the National Academy of Sciences of Ukraine, 2: 25-34. doi: 10.15407/dopovidi2024.02.025

Ma, Y., Frutos-Beltrán, E., Kang, D., Pannecouque, C., De Clercq, E., Menéndez-Arias, L., Liu, X. and Zhan, P. (2021): Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chemical Society Reviews, 50: 4514-4540. doi: 10.1039/d0cs01084g

Ozheredova, I. P., Parnikoza, I. Yu., Poronnik, O. O., Kozeretska, I. A., Demidov, S. V. and Kunakh, V. A. (2015): Mechanisms of Antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics, 49(2): 139-145. doi: 10.3103/S0095452715020085

Piotrowicz-Cieślak, A. I., Giełwanowska, I., Bochenek, A., Loro, P. and Górecki, R. J. (2005): Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Acta Societatis Botanicorum Poloniae, 74(3): 209-217. doi: 10.5586/asbp.2005.027

Ribeiro, G. D. J. G., de Souza, E. E., Palmisano, G., Durigon, E. L., Liebau, E. and Wrenger, C. (2025): Plant-derived extracts and natural products with antiviral activity. Frontiers in Virology, 5: 1632734. doi: 10.3389/fviro.2025.1632734

Rubilar, L., Avilés, J., Sarmiento, M., Sobarzo, F., Zúñiga, G. E. and Contreras, R. A. (2025): Priming of C-glycoside flavones in Colobanthus quitensis with salicylic acid, methyl jasmonate, pimelic acid, suberic acid, and azelaic acid elicits antifungal activity against Botrytis cinerea. (bioRxiv preprint, doi: 10.1101/2025.03.30.646165). ACS Agricultural Science & Technology, 5(7): 1497-1509. doi: 10.1021/acsagscitech.5c00273

Rybalko, S., Poronnik, O., Myryuta, G., Balanda, A., Arkhypova, M., Starosyla, D., Deryabin, O., Puhovkin, A., Parnikoza, I. and Kunakh, V. (2024): Antiviral activity of Deschampsia antarctica plant extracts in vitro. Czech Polar Reports, 13(2): 228-235. doi: 10.5817/CPR2023-2-18

Vera, M. L. (2011): Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Research, 30: 7146. doi: 10.3402/polar.v30i0.7146

Zúñiga, G. E., Alberdi, M., Fernández, J., Móntiel, P. and Corcuera, L. J. (1994): Lipid content in leaves of Deschampsia antarctica from the maritime Antarctic. Phytochemistry, 37(3): 669-672. doi: 10.1016/S0031-9422(00)90335-2

Web sources / Other sources

[1] WHO (2025): Reported COVID-19 cases. COVID-19 Cases. World Health Organization. 1–30. Available online: https://covid19.who.int/ (Accessed June 16, 2025).

Metrics

0

Crossref logo

0


0

Views

0

PDF views