Micromorphological features of organo-mineral interactions in soils and soil-like bodies of Thala Hills, East Antarctica
Vol.15,No.2(2025)
Ice-free regions (oases) in East Antarctica have been recognized for their diverse environmental conditions of soil formation. Understanding the biogenic-abiogenic interactions, composition and dynamics of soil organic matter can provide insights into the resilience of Antarctic ecosystems in the face of environmental changes. Therefore, this study is aimed at the investigation of micromorphological features, biogeochemical properties and composition of soil organic matter across various scales in the soil and soil-like bodies of Thala Hills, East Antarctica. The examined soils are typically characterized by shallow profiles, predominantly coarse textures, slightly acidic to nearly neutral pH levels, and very low organic carbon content. Soil horizons studied differed by content of total organic carbon (from 0.42% in the sub-surface horizons to 13.68% in the topsoil Histic horizon in a wind shelter) and nitrogen (from 0.025% to 1.89%). Organomineral interactions are primarily observed in the form of biofilms, which predominantly develop in wind-sheltered areas and rock cavities. Micromorphological analyses revealed a predominance of primary materials, which are significantly modified by cryogenic processes (seen by vertical mineral alignment, cracks, and numerous packing voids) and physical weathering, with minimal influence from chemical weathering. Microscopic examination of soil thin sections indicated that the microfabric of these soils is predominantly composed of coarse detrital skeleton with abundant voids, while soils generally exhibit a low proportion of fine earth material.
cryosols; East Antarctica; micromorphology; organic matter; soil genesis
Abakumov, E. V. (2010): The sources and composition of humus in some soils of West Antarctica. Eurasian Soil Science, 43(5): 499-508. doi: 10.1134/S1064229310050030
Abakumov, E., Alekseev, I. (2018): Stability of soil organic matter in Cryosols of the maritime Antarctic: insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth, 9(6): 1329-1339. doi: 10.5194/se-9-1329-2018
Abakumov, E., Mukhametova, N. (2014): Microbial biomass and basal respiration of selected sub-Antarctic and Antarctic soils in the areas of some Russian polar stations. Solid Earth, 5(2): 705-712. doi: 10.5194/se-5-705-2014
Aislabie, J. M., Jordan, S. and Barker, G. M. (2008): Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 144: 9-20. doi: 10.1016/j.geoderma.2007.10.006
Akulava, V., Miamin, U., Akhremchuk, K., Valentovich, L., Dolgikh, A. and Shapaval, V. (2022): Isolation, physiological characterization, and antibiotic susceptibility testing of fast-growing bacteria from the sea-affected temporary meltwater ponds in the Thala Hills Oasis (Enderby Land, East Antarctica). Biology, 11(8): 1143. doi: 10.3390/biology11081143
Alekseev, I., Abakumov, E. (2020): Permafrost table depth in soils of Eastern Antarctica oases: King George and Ardley Islands (South Shetland Islands). Czech Polar Reports, 10: 7-22.
Alekseev, I., Abakumov, E. (2024): Soil organic matter and biogenic-abiogenic interactions in soils of Larsemann Hills and Bunger Hills, East Antarctica. Polar Science, 40: 101040. doi: 10.1016/j.polar.2023.101040
Alekseev, I., Zverev, A. and Abakumov, E. (2020): Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: Environmental controls and effect of human impact. Microorganisms, 8: 1202. doi: 10.3390/microorganisms8081202
Almeida, I. C. C., Schaefer, C. E. G. R., Fernandes, R. B. A., Oliveira, F. S. and Pereira, T. T. C. (2021): Clay mineralogy and micropedology of phosphate-rich soils from Lions Rump, Maritime Antarctica. Journal of South American Earth Sciences, 105: 102967. doi: 10.1016/j.jsames.2020.102967
Andreev, M. P. (1990): Lichainiki pribrezhnych oazisov Vostochnoj Antarktidy [Lichens of the coastal oases in East Antarctica]. Novitates Systematicae Plantarum Non Vascularum, 27: 93-95. (In Russian).
Andreev, M. P. (2013): Lichainiki oazisa Molodyozhnyi i prilegajushchih territorij (Zemlya Enderbi) [Lichens of the oasis Molodyozhnyi and adjacent areas (Enderby Land)]. Novitates Systematicae Plantarum Non Vascularum, 47: 167-178. (In Russian).
Black, L. P., Harley, S. L., Sun, S. S. and Mcculloch, M. T. (1987): The Rayner Complex of East Antarctica: Complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology, 5: 1-26. doi: 10.1111/j.1525-1314.1987.tb00366.x
Bockheim, J. G., Balks, M. R. and McLeod, M. (2006): ANTPAS guide for describing, sampling, analyzing, and classifying soils of the Antarctic region. ANTPAS soil description manual, 12 p.
Bockheim, J., Hall, K. (2002): Permafrost active-layer dynamics and periglacial environments of continental Antarctica. South African Journal of Science, 98: 82-90.
Bockheim, J. G., McLeod, M. (2008): Soil distribution in the McMurdo dry valleys Antarctica. Geoderma, 144(1): 43-49.
Bockheim, J. G. (2015, ed.): The soils of Antarctica. Springer, 322 p.
Brehm, U., Gorbushina, A. and Mottershead, D. (2005): The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. In: Geobiology: Objectives, concepts, perspectives. Elsevier, pp. 117–129.
Campbell, I. B., Balks, M. R. and Claridge, G. G. C. (1993): A simple visual technique for estimating the impact of fieldwork on the terrestrial environment in icefree areas in Antarctica. Polar Record, 29: 321-328. doi: 10.1017/S0032247400023974
Campbell, I. B., Claridge, G. G. and Balks, M. R. (1998): Short and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Record, 34: 15-24. doi: 10.1017/S0032247400014935
Cavacini, P. (2001): Soil algae from northern Victoria Land (Antarctica). Polar Bioscience, 14: 46-61.
Chen, J., Blume, H. P. and Beyer, L. (2000): Weathering of rocks induced by lichen colonization – A review. Catena, 39(2): 121-146.
Claridge, G. G. C. (1965): The clay mineralogy and chemistry of some soils from the Ross Dependency Antarctica. New Zealand Journal of Geology and Geophysics, 8: 186-220. doi: 10.1080/00288306.1965.10428107
Convey, P., Chown, S. L., Clarke, A., Barnes, D. K. A., Bokhorst, S., Cummings, V., Ducklow, H. W., Frati, F., Green, T. G. A., Gordon, S., Griffiths, H. J., Howard-Williams, C., Huiskes, A. H. L., Laybourn-Parry, J., Lyons, W. B., McMinn, A., Morley, S. A., Peck, L. S., Quesada, A., Robinson, S. A., Schiaparelli, S. and Wall, D.H. (2014): The spatial structure of Antarctic biodiversity. Ecological Monographs, 84: 203-244. doi: 10.1890/12-2216.1
Dolgikh, A. V., Mergelov, N. S., Abramov, A. A., Lupachev, A. V. and Goryachkin, S. V. (2015): Soils of Enderby Land. In: J. G. Bockheim (ed.): The soils of Antarctica. Springer, Cham, pp. 45–63.
Espejo, W., Celis, J. E., Sandoval, M., González-Acuña, D. A., Barra, R. O. and Capulín, J. (2017): The impact of penguins on the content of trace elements and nutrients in coastal soils of northwestern Chile and the Antarctic Peninsula area. Water, Air, & Soil Pollution, 228: 116.
Evans, E. J. C. (1982): Seasonal microbial activity in Antarctic lakefreshwater sediments. Polar Biology, 2: 129-140.
Fitzpatrick, E. A. (1984): The micromorphology of soils. In: Micromorphology of Soils. Springer, Dordrecht. doi: 10.1007/978-94-009-5544-8_13
Friedman, E. I. (1982): Endolithic microorganisms in the Antarctic cold desert. Science, 215(4537): 1045-1053.
Gagarina, E. I. (2004): Micromorphological method of soil investigation. St Petersburg University Publishing House, St. Petersburg, 155 p. (In Russian).
Ganzert, L., Lipski, A., Hubberten, H. W. and Wagner, D. (2011): The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island South Shetland Archipelago Antarctica. FEMS Microbiology Ecology, 76(3): 476-491.
Gerasimova, M. I., Kovda, I. V., Lebedeva, M. P. and Tursina, T. V. (2011): Micromorphological terms: The state of the art in soil microfabric research. Eurasian Soil Science, 44(7): 804-817.
Gilichinsky, D., Abakumov, E., Abramov, A., Fyodorov-Davydov, D., Goryachkin, S., Lupachev, A., Mergelov, N. and Zazovskaya, E. (2010): Soils of mid and low Antarctic: Diversity geography temperature regime. In: Proceedings of the 19th World Congress Soil Science Soil Solutions for a Changing World; Brisbane Australia, pp. 32–35.
Glazovskaya, M. A. (1958): Weathering and initial pedogenesis in Antarctica. Nauchnye Doklady Vysshey Shkoly Geologicheckie-Geographicheskie Nauki, 1: 63-76. (In Russian).
Glazovskaya, M. A. (2002): Biogeochemical weathering of andesitic volcanic rocks in subantarctic periglacial conditions. Izvestiya Akademii Nauk Seriya Geographicheskaya, 3: 39-48. (In Russian).
Golubkova, N. S., Savich, V. P. and Simonov, I. M. (1969): Lichainiki zapadnoi chasti Zemli Enderbi [Lichens of the western part of Enderby Land]. Trudy Sovetskoy Antarkticheskoy Ekspeditsii, 38: 247-253. (In Russian).
Grew, E. S. (1978): Precambrian basement at Molodezhnaya station East Antarctica. Geological Society of America Bulletin, 89(6): 801-813.
Kachynskyi, N. A. (1970): Soil physics. Vyshaya shkola, Moscow, 320 p. (In Russian).
Konischev, V. V., Rogov, V. N. (2008): The influence of cryogenesis on clay-type minerals. Earth’s Cryosphere, 12(1): 51-58. (In Russian).
Kubiena, W. L. (1970): Micromorphologic investigations of Antarctic soils. Antarctic Journal, 5(4): 105-106.
Kukharchyk, T., Kakareka, S. and Giginyak, Y. (2018): Trace elements in soils of oases of Enderby Land (on an example of Vecherny oasis). Czech Polar Reports, 8: 162-177.
Kukharchyk, T. I., Kakareka, S. V. and Rabychyn, K. O. (2024): Microplastics in soils of the Thala Hills, East Antarctica. Eurasian Soil Science, 57: 502-512. doi: 10.1134/S1064229323603025
Kurbatova, L. Ye., Andreev, M. P. and Dolgikh, A. V. (2014): Bryophytes of the oasis Molodyoznyi (Enderby Land, Antarctica). Novitates Systematicas Plantarum Non-Vascularium, 48: 365-373. (In Russian).
Lee, Y. I., Lim, H. S. and Yoon, H. I. (2004): Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: Implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta, 68: 4319-4333.
Lopes, D. V., Schaefer, C. E. G. R., de Souza, J. J. L. L., de Oliveira, F. S., Simas, F. N. B., Daher, M. and Gjorup, D. F. (2019): Concretionary horizons, unusual pedogenetic processes and features of sulfate affected soils from Antarctica. Geoderma, 347: 13-24. doi: 10.1016/j.geoderma.2019.03.024
Lukashanets, D. A., Convey, P., Borodin, O. I. et al. (2021): Eukarya biodiversity in the Thala Hills, East Antarctica. Antarctic Science, 33(6): 605-623. doi: 10.1017/S0954102021000328
Lupachev, A. V., Gubin, S. V. and Abakumov, E. V. (2020): Levels of biogenic-abiogenic interaction and structural organization of soils and soil-like bodies in Antarctica In: O. Frank-Kamenetskaya, D. Vlasov, E. Panova, S. Lessovaia (eds): Processes and phenomena on the boundary between biogenic and abiogenic nature Lecture Notes in Earth System Sciences. Springer Cham, pp. 481–500. doi: 10.1007/978-3-030-21614-6_26
Lysak, V., Maksimova, I. A., Nikitin, D. A., Ivanova, A. E., Kudinova, A. G., Soina, V. S. and Marfenina, O. E. (2018): Soil microbial communities of eastern Antarctica. Moscow University Biological Sciences Bulletin, 73(3): 104-112 doi: 10.3103/s0096392518030124
MacNamara, E. E. (1969): Pedology of Enderby Land Antarctica. Antarctic Journal: 208-210.
Mergelov, N. (2014): Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land East Antarctica). Eurasian Soil Science, 47(9): 845-862.
Mergelov, N., Dolgikh, A., Shorkunov, I., Zazovskaya, E., Soina, V., Yakushev, A., Fedorov-Davydov, D., Pryakhin, S. and Dobryansky, A. (2020): Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of East Antarctica. Scientific Reports, 10(1): 10277. doi: 10.1038/s41598-020-67248-3
Mergelov, N., Konyushkov, D., Lupachev, A. and Goryachkin, S. (2015): Soils of Mac Robertson Land. In: J. G. Bockheim (ed.): The soils of Antarctica. Springer, Cham, pp. 65–86. doi: 10.1007/978-3-319-05497-1_5
Metcheva, R., Yurukova, L. and Teodorova, S. (2011): Biogenic and toxic elements in feathers eggs and excreta of gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environmental Monitoring and Assessment, 182: 571-585. doi: 10.1007/s10661-011-1898-9
Michel, R., Schaefer, C., Dias, L., Simas, F., Benites, V. and Mendonca, E. (2006): Ornithogenic gelisols (cryosols) from maritime Antarctica: Pedogenesis vegetation and carbon studies. Soil Science Society of America Journal, 70: 1370-1376.
Moorhead, D. L., Doran, P. T., Fountain, A. G., Lyons, W. B.,McKnight, D. M., Priscu, J. C. Virginia, R. A. and Wall, D. H. (1999): Ecological legacies:impacts on ecosystem of the McMurdo Dry Valleys. Bioscience, 49: 1009-1019.
Øvstedal, D. O., Smith, R. I. L. (2001): Lichens of Antarctica and South Georgia: A guide to their identification and ecology. Cambridge University Press, Cambridge, 411 p.
Pereira, T. T. C., Schaefer, C. E., Ker, J. C., Almeida, C. C., Almeida, I. C. and Pereira, A. B. (2013): Genesis mineralogy and ecological significance of ornithogenic soils from a semidesert polar landscape at Hope Bay Antarctic Peninsula. Geoderma, 209–210: 98-109.
de los Ríos, A., Wierzchos, J., Sancho, L. G. and Ascaso, C. (2003): Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environmental Microbiology, 5(4): 231-237. doi: 10.1046/j.1462-2920.2003.00417.x
Rodrigues, W. F., Oliveira, F. S., Schaefer, C. E., Leite, M. G., Gauzzi, T., Bockheim, J. G. and Putzke, J. (2019): Soil-landscape interplays at Harmony Point Nelson Island maritime Antarctica: Chemistry mineralogy and classification. Geomorphology, 336: 77-94. doi: 10.1016/j.geomorph.2019.03.030
Santamans, A. C., Boluda, R., Picazo, A., Gil, C., Ramos-Miras, J., Tejedo, P., Pertierra, L. R., Benayas, J. and Camacho, A. (2017): Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS ONE, 12(8): e0181901. doi: 10.1371/journal.pone0181901
Savicz-Lyubitskaya, L. I., Smirnova, Z. N. (1972): Bryum algens Card = Naibolee obyknovenny moh Vostochnoy Antarktidy [Bryum algens Card – the most common moss in East Antarctica]. Proceedings of Soviet Antarctic Expedition, 60: 328-345. (In Russian).
Schaefer, C. E., Simas, F. N., Gilkes, R. J., Mathison, C. I., Costa, L. M. and Albuquerque, M. A. (2008): Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma, 144: 104-115.
Sedov, S., Zazovskaya, E. P., Fedorov-Davydov, D. and Alekseeva, T. (2019): Soils of East Antarctic oasis: Interplay of organisms and mineral components at microscale. Boletín de la Sociedad Geológica Mexicana, 71(1): 43-63 doi: 10.18268/bsgm2019v71n1a4
Simas, F. N. B., Schaefer, C. E., Filho, M. R., Francelino, M. R., Filho, E. I. and da Costa, L. M. (2008): Genesis, properties and classification of Cryosols from Admiralty Bay maritime Antarctica. Geoderma, 144: 116-122.
Simas, F. N. B., Schaefer, C. E., Mendonça, E. D., Silva, I. R., Santana, R. M. and Ribeiro, A. D. (2007): Organic carbon stocks in permafrost-affected soils from Admiralty Bay Antarctica. Journal of Research of the U. S. Geological Survey, 1047: 76-79.
Stoops, G. (2003): Guidelines for analysis and description of soil and regolith thin section. Soil Science Society of America, Inc Madison WI USA. doi: 10.1002/9780891189763
Tedrow, J. C. F., Ugolini, F. C. (1966): Antarctic soils and soil forming processes. Antarctic Research Series American Geophysical Union of the National Academy of Sciences-National Research Council, Washington DC, 177 p.
Ugolini, F. C., Bull, C. (1965): Soil development and glacial events in Antarctica. Quaternaria, 7: 251-269.
Ugolini, F. C., Jackson, M. L. (1982): Weathering and mineral synthesis in Antarctic soils. In: C. Craddock (ed.): Antarctic geoscience. Univ Wisconsin, Madison, pp. 1101–1111.
Verkulitch, S., Pushina, Z. V., Tatur, A. et al. (2012): Holocene changes of environments on the Fildes Peninsula King George Island Western Antarctica. Problemy Arktiki i Antarktiki, 3(93): 17-27. (In Russian).
Verkulitch, S. R. (2009): Conditions and regime of the last deglaciation in the edge zone of Antarctica. Earth Cryosphere, 2: 73-81. (In Russian).
Vlasov, D. Yu., Abakumov, E. V., Nadporozhskaya, M. A., Kovsh, N. V., Krylenkov, V. A., Lukin, V. V. and Safronova, E. V. (2005): Lithosols of King George Island Western Antarctica. Eurasian Soil Science, 38(7): 681-687.
Zazovskaya, E., Mergelov, N., Shishkov, V., Dolgikh, A., Miamin, V., Cherkinsky, A. and Goryachkin, S. (2017): Radiocarbon age of soils in oases of East Antarctica. Radiocarbon, 59(2): 489-503. doi: 10.1017/RDC.2016.75
Web sources / Other sources
[1] ROSHYDROMET: http://www.wmo.int/pages/prog/www/Antarctica
[2] IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th edn. International Union of Soil Sciences (IUSS), Vienna, Austria.
Copyright © 2026 Ivan Alekseev, Elena Grek