State-of-Art and activities of the culture collection of experimental strains of microalgae and cyanobacteria isolated from cold environments @IBOT

Vol.15,No.S(2025)
CPR Special issue

Abstract

Culture collections contain cyanobacterial and microalgal strains as type species taxonomical studies and future exploitation in basic and applied research. The Culture collection of experimental strains, isolated from cold environments, at the Institute of Botany CAS, Třeboň, Czech Republic, is a working non-public culture collection, i.e., the strains are being isolated and used in experiments, but they are not available for sale. At present (June 2025), the culture collection contains 350 defined strains of cyanobacteria and microalgae isolated from Antarctica (168 strains), Arctic (148 strains), Europe (18 strains) and North America (14 strains). The origin of two strains is unknown. The strains originate from snow/glacier (17 strains), lacustrine (39 strains), hydro-terrestrial (24 strains), and terrestrial (72 strains) environments. It is planned to determine the original environment of the remaining 198 strains in the near future. From a taxonomical point of view, 153 strains belong to the Cyanophyceae class, 38 to the Trebouxiophyceae class, 32 to the Chlorophyceae class, 23 to the Klebsormidiophyceae class, 8 to the Zygnematophyceae class and 94 to the Xanthophyceae class. The Ulvophyceae and Bacillariophyceae classes are both represented by a single strain. In addition, methods of sampling, isolation, maintenance, and determination of strains are described.


Keywords:
culture collections; polar cyanobacteria and algae; microorganisms; strains; cryopreservation
References

Agostini, A., Bína, D., Barcytė, D., Bortolus, M., Eliáš, M., Carbonera, D. and Litvín, R. (2024): Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes. Communications Biology, 7(1): 1406. doi: 10.1038/s42003-024-07101-9

Ahmad, A., Banat, F., Alsafar, H. and Hasan, S. W. (2022): Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Science of The Total Environment, 806: 150585.

Allen, M. M. (1968): Simple conditions for growth of unicellular blue-green algae on plates. Journal of Phycology, 4: 1-4.

Allen, M. M., Stainer, R. Y. (1968): Studies with Cyanidium caldarium, an anomalously pigmented Chlorophyte. Archiv für Mikrobiologie, 32: 270-277.

Andersen, R. A. (2005): Algal culturing techniques. Elsevier Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, San Diego, San Francisco, Singapore, Sydney, Tokyo, 578 p.

Andreieva, V. M. (1998): Soil and aerophilic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Nauka, St. Peterburg, Russia, 349 p.

Arora, K., Kumar, P., Bose, D., Li, X. and Kulshrestha, S. (2021): Potential applications of algae in biochemical and bioenergy sector. 3 Biotech, 11(6): 296.

Bischoff, H. W., Bold, H. C. (1963): Phycological studies IV. Some soil algae from enchanted rock and related algal species. University of Texas Publication No. 6318, Austin, Texas, USA, 95 p.

Bold, H. C. (1949): The Morphology of Chlamydomonas chlamydogama, sp. nov. Bulletin of the Torrey Botanical Club, 76(2): 101-108.

Caisová, L., Marin, B. and Melkonian, M. (2013): A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist, 164(4): 482-496.

Coleman, A. W., Mai, J. C. (1997): Ribosomal DNA and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. Journal of Molecular Evolution, 45: 168-177.

Coleman, A.W. (2007): Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research, 35(10): 3322-3329.

Darienko, T., Gustavs, L., Eggert, A., Wolf, W. and Pröschold, T. (2015): Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE, 10(6): e0127838.

Dawiec-Liśniewska, A., Podstawczyk, D., Bastrzyk, A., Czuba, K., Pacyna-Iwanicka, K., Okoro, O. V. and Shavandi, A. (2022): New trends in biotechnological applications of photosynthetic microorganisms. Biotechnology Advances, 59: 107988.

Day, J. G., Benson, E. E., Harding, K., Knowles, B., Idowu, M., Bremner, D., Santos, L., Santos, F., Friedl, T., Lorenz, M., Lukesova, A., Elster, J., Lukavsky, J., Herdman, M., Rippka, R. and Hall, T. (2005): Cryopreservation and conservation of microalgae: The Development of a Pan-European Scientific and Biotechnological Resource (The COBRA Project). CryoLetters, 26(4): 231-238.

Day, J. G., Brand, J. J. (2005): Cryopreservation methods for maintaining microalgal cultures. In: R. A. Andersen (ed.): Algal culturing techniques. Elsevier Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp. 165–188.

Day, J. G., Fleck, R. A. (2015): Cryo-injury in algae and the implications this has to the conservation of micro-algae. Microalgae Biotechnology, 1: 1-11. doi: 10.1515/micbi-2015-0001

Day, J. G., Lorenz, M., Wilding, T. A., Friedl, T., Harding, K., Pröschold, T., Brennan, D., Müller, J., Santos, L. and Santos, F. M. (2007): The use of physical and virtual infrastructures for the validation of algal cryopreservation methods in international culture collections. CryoLetters, 28(5): 359-376.

Day, J. G., Lukavsky, J., Friedl, T., Brand, J. J., Campbell, C. N., Lorenz, M. and Elster, J. (2004): Pringsheim's living legacy: CCALA, CCAP, SAG and UTEX culture collections of algae. Nova Hedwigia, 79(1): 27-38.

Elster, J. (2002): Ecological classification of terrestrial algal communities in polar environments. In: L. Beyer, M. Bötler (eds.): Geoecology of Antarctic ice-free coastal lanscapes. Springer-Verlag, Berlin, Heidelberg, pp. 303–326.

Elster, J., Benson, E. E. (2004): Life in the polar terrestrial environment with a focus on algae and cyanobacteria. In: B. J. Fuller, N. Lane, E. E. Benson (eds.): Life in the frozen state. CRC Press, Boca Raton, pp. 111–150.

Elster, J., Lukavský, J., Harding, K., Benson, E. E. and Day, J. G. (2008): Development of the encapsulation/dehydration protocol to cryopreserve polar microalgae held at the Czech Republic Academy of Science Institute of Botany. CryoLetters, 29(1): 27-28.

Ettl, H. (1978): Xanthophyceae, 1. Teil. Fischer Verlag, Stuttgart, New York, 530 p.

Ettl, H., Gärtner, G. (1986): Chlorophyta. 2. Tiel/Part 2. Tetrasporales, Chlorococcales, Gloeodendrales. Gustav Fischer Verlag, Stuttgart, Germany, 436 p.

Ettl, H., Gärtner, G. (2014): Syllabus der Boden-, Luft- und Flechtenalgen. Springer, Berlin, Heidelberg, Germany, 773 p.

Hindák, F. (1978): Sladkovodné riasy. Slovesnské pedagogické nakladatelstvo, Bratislava, Slovakia, 728 p.

Hindák, F. (2008): Colour atlas of Cyanobacteria. Veda, Bratislava, Slovakia, 253 p.

Hollerbach, M. M., Schtina, E. A. (1969): Soil algae. Nauka, Leningrad, Russia, 228 p.

Holzinger, A., Albert, A., Aigner, S., Uhl, J., Schmitt-Kopplin, P., Trumhová, K. and Pichrtová, M. (2018): Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: Vegetative cells perform better than pre-akinetes. Protoplasma, 255(4): 1239-1252. doi: 10.1007/s00709-018-1225-1

Hopes, A., Thomas, D. N. and Mock, T. (2017): Polar microalgae: Functional genomics, physiology, and the environment. In: R. Margesin (ed.): Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham, pp. 305–344.

Karcheva, Z., Georgieva, Z., Tomov, A., Petrova, D., Zhiponova, M., Vasileva, I. and Chaneva, G. (2022): Heavy metal stress response of microalgal strains Arthronema africanum and Coelastrella sp. BGV. In: S. Chankova, V. Peneva, R. Metcheva, M. Beltcheva, K. Vassilev, G. Radeva, K. Danova (eds.): Current trends of ecology. BioRisk, 17: 83-94. doi: 10.3897/biorisk.17.77483

Kaštovský, J., Hauer, T., Geriš, R., Chattová, B., Juráň, J., Lepšová-Skácelová, O., Pitelková, P., Pusztai, M., Škaloud, P., Šťastný, J., Čapková, K., Bohunická, M. and Mühlsteinová, R. (2018a): Atlas sinic a řas ČR 1. powerprint, Praha, Czech Republic, 384 p.

Kaštovský, J., Hauer, T., Geriš, R., Chattová, B., Juráň, J., Lepšová-Skácelová, O., Pitelková, P., Pusztai, M., Škaloud, P., Šťastný, J., Čapková, K., Bohunická, M. and Mühlsteinová, R. (2018b): Atlas sinic a řas ČR 2. powerprint, Praha, Czech Republic, 480 p.

Kolomiiets, A., Bren, O., Přibyl, P., Kvíderová, J., Procházková, L., Pushkareva, E., Elster, J. and Becker, B. (2025): Unveiling the molecular mechanisms of the stress resilience of High Arctic Klebsormidium flaccidum: A multifaceted study. Plant & Cell Physiology, 66(10): 1397-1411. doi: 10.1093/pcp/pcaf091

Komárek, J., Anagnostidis, K. (1999): Süßwasserflora von Mitteleuropa 19/1. Cyanoprokaryota. 1.Teil: Chroococcales. Gustav Fischer Verlag, Jena, Germany, 548 p.

Komárek, J., Anagnostidis, K. (2005): Süßwasserflora von Mitteleuropa 19/2. Cyanoprokaryota. 2.Teil: Oscillatoriales. Elsevier/Spektrum, Heidelberg, Germany, 759 p.

Komárek, J. (2013): Süßwasserflora von Mitteleuropa 19/3. Cyanoprokaryota. 3.Teil: Heterocytous genera. Springer, Heidelberg, Germany, 1131 p.

Kostikov, I. Y., Romanenko, P. O., Demchenko, E. M., Dariyenko, T. M., Mykhailiuk, T. I., Rybchynskyi, O. V. and Sololenko, A. M. (2001): Algae of the Soils of Ukraine (History and Methods of Research, System, Synopsis of Flora). Fitosotsiotsentr, Kiyv, Ukraine, 284 p.

Krammer, K., Lange-Bertalot, H. (1986): Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fischer Verlag, Stuttgart, Germany, 876 p.

Krammer, K., Lange-Bertalot, H. (1988): Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Fischer Verlag, Stuttgart, Germany, 612 p.

Krammer, K., Lange-Bertalot, H. (1991a): Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Spektrum Akademischer Verlag, Heidelberg, Germany, 576 p.

Krammer, K., Lange-Bertalot, H. (1991b): Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg, Germany, 437 p.

Kvíderová, J., Elster, J. and Komárek, J. (2019): Ecophysiology of cyanobacteria in the polar regions. In: A. K. Mishra, D. N. Tiwari, A. N. Rai (eds.): Cyanobacteria. From Basic Sciences to Applications. Academic Press, London, pp. 277–302.

Kvíderová, J., Shukla, S. P., Pushparaj, B. and Elster, J. (2017): Perspectives of low-temperature biomass production of polar microalgae and biotechnology expansion into high latitudes. In: R. Margesin (ed): Psychrophiles: From biodiversity to biotechnology. Springer, Cham, pp. 585–600.

Lakatos, G. E., Štěrbová, K., Bárcenas-Pérez, D., Grivalský, T., Manoel, J.C., Mylenko, M., Cheel, J., Nyári, J., Wirth, R. and Kovács, K. L. (2025): Tribonema cf. minus cultivation in thin-layer raceway pond to uncover its biotechnological potential. Journal of Applied Phycology, 37: 2231-2244. doi: 10.1007/s10811-025-03554-5.

Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F. and De Clerck, O. (2012): Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31(1): 1-46.

Leya, T. (2022): The CCCryo Culture Collection of Cryophilic algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. Applied Phycology, 3(1): 167-188.

Lukavský, J., Kopecký, J., Kubáč, D., Kvíderová, J., Procházková, L. and Řezanka, T. (2023): The alga Bracteacoccus bullatus (Chlorophyceae) isolated from snow, as a source of oil comprising essential unsaturated fatty acids and carotenoids. Journal of Applied Phycology, 35(2): 649-660.

Lukešová, A., Hrouzek, P., Harding, K., Benson, E. E. and Day, J. G. (2008): Deployment of the encapsulation/dehydration protocol to cryopreserve diverse microalgae held at the Institute of Soil Biology, Academy of Sciences of the Czech Republic. CryoLetters, 29(1): 21-26.

Mikhailyuk, T., Glaser, K., Demchenko, E., Hotter, V., Pushkareva, E. and Karsten, U. (2025): Diversity of algae and cyanobacteria from biological soil crusts in the High Arctic (Svalbard) along two different moisture gradients. European Journal of Phycology, 60(2): 221-244.

Mock, T., Thomas, D. N., Margesin, R., Schinner, F., Marx, J.-C. and Gerday, C. (2008): Microalgae in Polar regions: Linking functional genomics and physiology with environmental conditions. In: R. Margesin, F. Schinner, J.-C. Marx, C. Gerday (eds.): Psychrophiles: From biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp. 285–312.

Mori, F., Erata, M. and Watanabe, M. M. (2002): Cryopreservatoin of cyanobacteria and green algae in the NIES-collection. Microbiology and Culture Collections, 18(1): 45-55.

Nedbalová, L., Mihál, M., Procházková, L., Kvíderová, J. and Lukavský, J. (2024): The first phylogenetic and ecophysiological characterisation of Ankistrodesmus antarcticus CCAP 202/25, an Antarctic green alga isolated from freshwater ice. Czech Polar Reports, 14(2): 305-322.

Orekhova, A., Barták, M. and Hájek, J. (2018): Post rapid freezing growth of Antarctic strain of Heterococcus sp. monitored by cell viability and chlorophyll fluorescence. Cryobiology, 85: 39-46. doi: 10.1016/j.cryobiol.2018.10.004

Permann, C., Pierangelini, M., Remias, D., Lewis, L. A. and Holzinger, A. (2022): Photophysiological investigations of the temperature stress responses of Zygnema spp. (Zygnematophyceae) from subpolar and polar habitats (Iceland, Svalbard). Phycologia, 61(3): 299-311. doi: 10.1080/00318884.2022.2043089

Pushkareva, E., Pessi, I. S., Namsaraev, Z., Mano, M.-J., Elster, J. and Wilmotte, A. (2018): Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Systematic and Applied Microbiology, 41(4): 363-373.

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y. (1979): Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111(1): 1-61.

Řezanka, T., Nedbalová, L., Lukavský, J., Střížek, A. and Sigler, K. (2017): Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. Algal Research, 22: 160-165.

Řezanka, T., Nedbalová, L. and Lukavský, J. (2021): Směs olejů z řasy Chodatodesmus australis [A mixture of Chodatodesmus australis algae oils]. Utility Model #35669, Industrial Property Office of the Czech Republic, Prague, Czech Republic, 12 p.

Řezanka, T., Elster, J., Kubáč, D., Kvíderová, J., Procházková, L., Vítová, M. and Lukavský, J. (2025): Neocystis mucosa, a polar alga producing oils containing polyunsaturated essential fatty acids. Algal Research, 86: 103939.

Saraf, A., Dawda, H. G. and Singh, P. (2022): Polyphasic approach and cyanobacterial taxonomy: Some perspectives and case studies. In: R. P. Rastogi (ed.): Ecophysiology and biochemistry of cyanobacteria. Springer, Singapore, pp. 31–48.

Strunecký, O., Elster, J. and Komárek, J. (2010): Phylogenetic relationships between geographically separate Phormidium cyanobacteria: Is there a link between north and south polar regions? Polar Biology, 33: 1419-1428.

Strunecký, O., Elster, J. and Komárek, J. (2012a): Molecular clock evidence for survival of antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from paleozoic times. FEMS Microbiology Ecology, 82(2): 482-490.

Strunecký, O., Komárek, J. and Elster, J. (2012b): Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in Western and Central Spitsbergen. Polish Polar Research, 33(4): 369-382.

Tashyreva, D., Elster, J. and Billi, D. (2013): A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (Cyanobacteria) employing fluorescent dyes. PLoS ONE, 8(2): e55283.

Teneva, I., Batsalova, T., Moten, D., Petkova, Z., Teneva, O., Angelova-Romova, M., Antova, G. and Dzhambazov, B. (2025): Tolypothrix strains (Cyanobacteria) as a source of bioactive compounds with anticancer, antioxidant and anti-inflammatory activity. International Journal of Molecular Sciences, 26(11): 5086. doi: 10.3390/ijms26115086

Vasileva, I. A., Kiryakova, B. B., Iliev, I., Kvíderová, J., Procházková, L. and Lukavský, J. (2025): Ecophysiology of Deuterostichococcus epilithicus (Chlorophyta, Trebouxiophyceae), isolated from surface snow at Rhodope Mountains, Bulgaria. European Journal of Phycology, 60(1): 103-114.

Zachleder, V., Šetlík, I. (1982): Efect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biologia Plantarum, 24(5): 341-353.

Web sources / Other sources

[1] CCALA (2025): Culture Collection of Autotrophic Organisms (accessed on June 2, 2025). https://www.ibot.cas.cz/en/services/collections/collection-of-autotrophic-microorganisms-ccala

[2] Guiry, M., Guiry, G. (2025): AlgaeBase. World-wide electronic publication (searched on June 25, 2025). https://www.algaebase.org

[3] IBOT (2025): Experimental Garden and Gene Pool Collections Třeboň (accessed on June 2, 2025). https://www.ibot.cas.cz/en/labs/experimental-garden-and-gene-pool-collections-trebon/

[4] WFCC (2025): World Federation of Culture Collections (accessed on July 2, 2025). https://wfcc.info/membership/#

Metrics

0

Crossref logo

0

web of science logo


0

Views

0

PDF views