Holocene relative sea level changes and their consequences for the development of the palaeoshoreline in central Svalbard
Vol.15,No.S(2025)
CPR Special issue
The Arctic, particularly the Barents Sea region including Svalbard, has undergone exceptional warming and environmental change throughout the Holocene. This study investigates Holocene relative sea level (RSL) changes in Petuniabukta, northern Billefjorden (Svalbard), using radiocarbon dated whale bones found on uplifted marine terraces as indicators of past shoreline positions. Five new samples from the western side of the bay were integrated with previously published data from the eastern side to reconstruct palaeoshorelines and quantify land emergence driven by glacioisostatic rebound. The two oldest samples, located at 58.1 m a.s.l. and 34.7 m a.s.l., date at 10.3 and 9.1 cal. ka BP respectively, indicate rapid Early Holocene uplift averaging 3 cm/year. Spatial analysis based on ArcticDEM and high-resolution UAV-derived models reveals a 33% reduction in the marine area since the Early Holocene, with significant changes occurring in broad glaciated valley regions. Discrepancies in RSL trends may be attributed to local tectonic activity along the Billefjorden Fault Zone. While Early Holocene changes are well constrained, Late Holocene and Neoglacial sea-level dynamics remain ambiguous due to a lack of preserved indicators and minimal RSL variation. These findings highlight the potential of stranded whale bones as precise RSL markers and contribute to understanding the long-term cryospheric and geomorphic evolution of coastal areas in a rapidly warming Arctic.
coastline; Early Holocene; whale bones; glacioisostatic rebound; marine terraces
Auer, A. G., van der Bilt, W. G. M., Schomacker, A., Bakke, J., Støren, E. W. N., Buckby, J. M., Cedestrøm, J. M. and van der Plas, S. (2025): Hydroclimate intensification aided Early Holocene Arctic glacier survival. Communications Earth & Environment, 6: 100. doi: 10.1038/s43247-025-02064-z
Baar, W. (1971): Postglacial isostatic movement in northeastern Devon Island: A reappraisal. Arctic, 24: 249-268.
Baranskaya, A. V., Khan, N. S., Romanenko, F. A., Roy, K., Peltier, W. R. and Horton, B. P. (2018): A postglacial relative sea-level database for the Russian Arctic coast. Quaternary Science Reviews, 199: 188-205. doi: 10.1016/j.quascirev.2018.07.033
Bennike, O., Wagner, B. (2021): Quaternary vertebrates from the North Atlantic Islands. In: E. Panagiotukopulu, J. P. Sadler (Eds.): Biogeography in the Sub-Arctic: The Past and Future of North Atlantic Biota. pp. 147–160. doi: 10.1002/9781118561461.ch7
Bondevik, S., Mangerud, J., Ronnert, L. and Salvigsen, O. (1995): Postglacial sea-level history of Edgeøya and Barentsøya, eastern Svalbard. Polar Research, 14: 153-180. doi: 10.3402/polar.v14i2.6661
Boulton, G. S. (1979): Glacial history of the Spitsbergen archipelago and the problem of a Barents Shelf ice sheet. Boreas, 8: 31-57. doi: 10.1111/j.1502-3885.1979.tb00429.x
Dyke, A. S., Morris, T. F. and Green, D. E. C. (1991): Postglacial tectonic and sea level history of the central Canadian Arctic. Geological Survery of Canada Bulletin, 397, 56 p. 10.4095/132168
Dyke, A. S., Hooper, J. and Savelle, J. M. (1996): A history of sea ice in the Canadian Arctic archipelago based on the postglacial remains of the bowhead whale (Balanea mysticetus). Arctic, 46: 235-255. doi: 10.14430/ARCTIC1200
Evans, D. J. A., Strzelecki, M., Milledge, D. G. and Orton, C. (2012): Hørbyebreen polythermal glacial landsystem, Svalbard. Journal of Maps, 8: 1-11. doi: 10.1080/17445647.2012.680776
Ewertowski, M. W., Tomczyk, A. M. (2020): Reactivation of temporarily stabilized ice-cored moraines in front of polythermal glaciers: Gravitational mass movements as the most important geomorphological agents for the redistribution of sediments (A case study from Ebbabreen and Ragnarbreen, Svalbard). Geomorphology, 350: 106952. doi: 10.1016/j.geomorph.2019.106952
Farnsworth, W. R., Ingólfsson, Ó., Noormets, R., Allart, L., Alexanderson, H., Henriksen, M. and Schomacker, A. (2017): Dynamic Holocene glacial history of St. Jonsfjorden, Svalbard. Boreas, 46(3): 585-603. doi: 10.1111/bor.12269
Farnsworth, W. R., Allaart, L., Ingólfsson, Ó., Alexanderson, H., Forwick, M., Noormets, R., Retelle, M. and Schomacker, A. (2020): Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Science Reviews, 208: 103249. doi: 10.1016/j.earscirev.2020.103249
Farnsworth, W. R., Ingólfsson, Ó., Brynjólfsson, S., Allaart, L., Kjellman, S. E., Kjær, K. H., Larsen, N. K., Macias-Fauria, M., Siggaard-Andersen, M. and Schomacker, A. (2024): Persistence of Holocene ice cap in northeast Svalbard aided by glacio-isostatic rebound. Quaternary Science Reviews, 331: 108625. doi: 10.1016/j.quascirev.2024.108625
Fjeldskaar, W., Bondevik, S. and Amantov, A. (2018): Glaciers on Svalbard survived the Holocene thermal optimum. Quaternary Science Reviews, 199: 18-29. doi: 10.1016/j.quascirev.2018.09.003
Forman, S. L. (1990): Post-glacial relative sea-level history of northwestern Spitsbergen, Svalbard. GSA Bulletin, 102(11): 1580-1590.
Forman, S., Lubinski, D.J., Ingólfsson, Ó., Zeeberg, J. J., Snyder, J. A., Siegert, M. J. and Matishov, G. G. (2004): A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews, 23: 1391-1434. doi: 10.1016/j.quascirev.2003.12.007
Fürst, J. J., Navarro, F., Gillet-Chaulet, F., Huss, M., Moholdt, G., Fettweis, X., Lang, C., Seehaus, T., Ai, S., Benham, T. J., Benn, D. I., Björnsson, H., Dowdeswell, J. A., Grabiec, M., Kohler, J., Lavrentiev, I., Lindbäck, K., Melvold, K., Pettersson, R., Rippin, D., Saintenoy, A., Sánchéz-Gámez, P., Schuler, T. V., Sevestre, H., Vasilenko, E. and Braun, M. H. (2018): The ice-free topography of Svalbard. Geophysical Research Letters, 45(21): 11760-11769. doi: 10.1029/2018GL079734
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J. and Skinner, L. C. (2020): Marine20 – The marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62: 779-820. doi: 10.1017/RDC.2020.68
Isaksen, K., Lutz, J., Macdonald Sørensen, A., Godøy, Ø., Ferrighi, L, Eastwood, S. and Aaboe, S. (2022): Advances in operational permafrost monitoring on Svalbard and in Norway. Environmental Research Letters, 17: 095012. doi: 10.1088/1748-9326/ac8e1c
Jang, K., Bayon, G., Vogt, C., Forwick, M., Ahn, Y., Kim, J-H. and Nam, S-I. (2023): Non-linear response of glacier melting to Holocene warming in Svalbard recorded 647 by sedimentary iron (oxyhydr)oxides. Earth and Planetary Science Letters, 607: 118054. doi: 10.1016/j.epsl.2023.118054
Kavan, J. (2020a): Early twentieth century evolution of Ferdinand glacier, Svalbard, based on historic photographs and structure-from-motion technique. Geografiska Annaler: Series A, Physical Geography, 102(1): 57-67. doi: 10.1080/04353676.2020.1715124
Kavan, J. (2020b): Post-little ice age development of coast in the locality of Kapp Napier, Central Spitsbergen, Svalbard archipelago. Marine Geodesy, 43: 234-247. doi: 10.1080/01490419.2019.1674429
Kavan, J., Tallentire, G. D., Demidionov, M., Dudek, J. and Strzelecki, M. C. (2022): Fifty years of tidewater glacier surface elevation and retreat dynamics along the South-East Coast of Spitsbergen (Svalbard archipelago). Remote Sensing, 14(2): 354. doi: 10.3390/rs14020354
Kavan, J., Strzelecki, M. C. (2023): Glacier decay boosts the formation of new Arctic coastal environments – Perspectives from Svalbard. Land Degradation & Development, 34: 3467-3474. doi: 10.1002/ldr.4695
Kavan, J., Luláková, P., Małecki, J. and Strzelecki, M. C. (2024): Capturing the switch from marine to land-terminating glacier in Svalbard: 126 years of Nordenskiöldbreen retreat history. Journal of Glaciology, 70: 1-11. doi: 10.1017/jog.2023.92
Kavan, J., Szczypińska, M., Kochtitzky, W., Farquharson, L., Bendixen, M. and Strzelecki, M. C. (2025): New coasts emerging from the retreat of Northern Hemisphere marine-terminating glaciers in the 21st century. Nature Climate Change, 15: 528-537. doi: 10.1038/s41558-025-02282-5
Kavan, J., Hanáček, M. (2025, this issue): Svalbard environmental changes since the termination of the Little Ice Age: Towards warmer and less ice future. Czech Polar Reports.
Koehl, J-B., Allaart, L. (2021): The Billefjorden fault zone north of Spitsbergen: A major terrane boundary? Polar Research, 40: 7668. doi: 10.33265/polar.v40.7668
Long, A. J., Strzelecki, M. C., Lloyd, J. M. and Bryant, C. L. (2012): Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews, 48: 61-66. doi: 10.1016/j.quascirev.2012.06.009
Luláková, P., Šantrůčková, H., Elster, J., Hanáček, M., Kotas, P., Meador, T., Tejnecký, V. and Bárta, J. (2023): Mineral substrate quality determines the intial soil microbial development in from of the Nordenskiöldbreen, Svalbard. FEMS Microbiology Ecology, 99(10): 1-15. doi: 10.1093/femsec/fiad104
Małecki, J., Faucherre, S. and Strzelecki, M. C. (2013): Post−surge geometry and thermal structure of Hørbyebreen, central Spitsbergen. Polish Polar Research, 34: 305-321. doi: 10.2478/popore-2013-0019
Mangerud, J. (1972): Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway. Boreas, 1: 143-172. doi: 10.1111/j.1502-3885.1972.tb00147.x
Mangerud, J., Gulliksen, S. (1975): Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quaternary Research, 5: 263-273. doi: 10.1016/0033-5894(75)90028-9
Mangerud, J., Salvigsen, O. (1984): The Kapp Ekholm section, Billefjorden, Spitsbergen: A discussion. Boreas, 13: 155-158. doi: 10.1111/j.1502-3885.1984.tb00068.x
Mangerud, J., Svendsen, J. I. (1992): The last interglacial-glacial period on Spitsbergen, Svalbard. Quaternary Science Reviews, 11: 633-664. doi: 10.1016/0277-3791(92)90075-J
Mangerud, J., Svendsen, J. I. (2018): The Holocene thermal maximum around Svalbard, Arctic North Atlantic; molluscs show early and expectational warmth. The Holocene, 28(1): 1-19. doi: 10.1177/0959683617715701
Martín-Moreno, R., Allende Álvarez, F. and Hagen, J. O. (2017): ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. The Holocene, 27: 1379-1390. doi: 10.1177/0959683617693904
McCerery, R., Lovell, H., King, O., Davies, B., Boston, C. M., Małecki, J., Woodward, J. and Carrivick, J. (in review): Two rapidly vanishing glaciers in Svalbard: Elsabreen and Ferdinandbreen, Petuniabukta. Annals of Glaciology.
Möller, P. (2024): A bowhead whale vertebra embedded in marine limit beach sediment on Barentsøya, Svalbard. Polar Research, 43: 9724. doi: 10.33265/polar.v43.9724
Nordli, Ø., Wyszyński, P., Gjelten, H. M., Isaksen, K., Łupikasza, E., Niedźwiedź, T. and Przybylak, R. (2020): Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018. Polar Research, 39: 3614. doi: 10.33265/polar.v39.3614
Olsson, I. U. (1980): Content of 14C in marine mammals from Northern Europe. Radiocarbon, 22: 662-675. doi: 10.1017/s0033822200010031
Osika, A., Jania, J. and Szafraniec, J. A. (2022): Holocene ice-free strait followed by dynamic Neoglacial fluctuations: Hornsund, Svalbard. The Holocene, 32(7): 664-679. doi: 10.1177/09596836221088232
Ottemöller, L, Kim, W-Y., Waldhauser, F., Tjåland, N. and Dallmann, W. (2021): The Storfjorden, Svalbard, Earthquake Sequence 2008–2020: Transtensional tectonics in an Arctic intraplate region. Seismological Research Letters, 92: 2838-2849. doi: 10.1785/0220210022
Porter, C., Howat, I., Noh, M-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G. and Morin, P. (2023): “ArcticDEM, Version 4.1”, Harvard Dataverse, V1, [accessed 15 December 2024]. doi: 10.7910/DVN/3VDC4W
Rachlewicz, G., Szczuciński, W. and Ewertowski, M. (2007): Post−“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28: 159-186.
Rantanen, M., Karpechko, A.Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T. and Laaksonen, A. (2022): The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3: 168. doi: 10.1038/s43247-022-00498-3
Salvigsen, O. (1977): Radiocarbon datings and the extension of the Weichselian ice-sheet in Svalbard. Norsk Polarinstitutt Arbok, 1976: 209-224.
Salvigsen, O. (1981): Radiocarbon dated raised beaches in Kong Karls Land, Svalbard and their consequences for the glacial history of the Barents Sea area. Geografiska Annaler Series A, 63: 283-291. doi: 10.2307/520841
Salvigsen, O., Österholm, H. (1982): Radiocarbon dated raised beaches and glacial history of the northern coast of Spitsbergen, Svalbard. Polar Research, 1982(1): 97-115. doi: 10.3402/polar.v1982i1.7000
Schomacker, A., Farnsworth, W.R., Ingólfsson, Ó., Allart, L., Håkansson, L., Retelle, M., Siggaard-Andersen, M-L, Korsgaard, N.J., Rouillard, A. and Kjellman, S. E. (2019): Postglacial relative sea level change and glacier activity in the early and late Holocene: Wahlenbergfjorden, Nordaustlandet, Svalbard. Scientific Reports, 9: 6799. doi: 10.1038/s41598-019-43342-z
Sessford, E. G., Strzelecki, M. C. and Hormes, A. (2015): Reconstruction of Holocene patterns of change in a High Arctic coastal landscape, Southern Sassenfjorden, Svalbard. Geomorphology, 234: 98-107. doi: 10.1016/j.geomorph.2014.12.046
Stachowska, Z., van der Bilt, W.G.M. and Strzelecki, M.C. (2024): Coastal lake sediments from Arctic Svalbard suggest colder summers are stormier. Nature Communications, 15: 9688. doi: 10.1038/s41467-024-53875-1
Strzelecki, M. C., Long, A. J., Lloyd, J. M., Małecki, J., Zagórski, P., Pawłowski, Ł. and Jaskólski, M. W. (2018): The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in Central Spitsbergen (Billefjorden, Svalbard). Land Degradation & Development, 29: 1962-1978. doi: 10.1002/ldr.2923
Strzelecki, M.C., Szczuciński, W., Dominiczak, A., Zagórski, P., Dudek, J. and Knight, J. (2020): New fjords, new coasts, new landscapes: The geomorphology of paraglacial coasts formed after recent glacier retreat in Brepollen (Hornsund, southern Svalbard). Earth Surface Processes and Landforms, 45: 1325-1334. doi: 10.1002/esp.4819
Stuiver, M., Polach, H. A. (1977): Discussion reporting of 14C data. Radiocarbon, 19: 355-363. doi: 10.1017/S0033822200003672
Szczuciński, W., Zajaczkowski, M. and Scholten, J. (2009): Sediment accumulation rates in subpolar fjords – impact of post-little ice age glaciers retreat, Billefjorden, Svalbard. Estuarine, Coastal and Shelf Science, 85(3): 345-356. doi: 10.1016/j.ecss.2009.08.021
Tejnecký, V., Luláková, P., Šantrůčková, H., Křížová, P., Lehejček, J., Hájek, T., Mercl, F., Bárta, J., Němeček, K. and Drábek, O. (2025): Arctic willow (Salix polaris) exudation as a driver of microbial activity and soil formation in the high Arctic tundra. Biogeochemistry, 168: 30. doi: 10.1007/s10533-025-01222-x
Tomczyk, A. M. (2021): Morphometry and morphology of fan-shaped landforms in the high-Arctic settings of central Spitsbergen, Svalbard. Geomorphology, 392: 107899. doi: 10.1016/j.geomorph.2021.107899
van der Bilt, W. G. M., D'Andrea, W. J., Werner, J. P. and Bakke, J. (2019): Early Holocene temperature oscillations exceed amplitude of observed and projected warming in Svalbard lakes. Geophysical Research Letters, 46: 14732-14741. doi: 10.1029/2019GL084384
van Pelt, W., Frank, T. (2025): New glacier thickness and bed topography maps for Svalbard. The Cryosphere, 19: 1-17. doi: 10.5194/tc-19-1-2025
Weidick, A. (1972): Holocene shore-lines and glacial stages in Greenland – an attempt at correlation. Rapport Grønlands Geologiske Undersøgelse, 41: 1-39. doi: 10.34194/rapggu.v41.7281
Yoshikawa, K., Nakamura, T. (1996): Pingo growth ages in the delta area, Adventdalen, Spitsbergen. Polar Record, 32: 347-352. doi: 10.1017/S0032247400067565
Copyright © 2026 Martin Lulák, Daniel Nývlt, Milan Novák, Jan Kavan
