A growing anthropogenic impact on the Arctic environment affects the ecology of polar vegetation
Vol.15,No.S(2025)
CPR Special issue
Recent climatic changes, anthropogenic impacts and new infrastructure development across the Arctic may increase risks for terrestrial ecosystems. A wide range of anthropogenic impact factors are reported for the Arctic, such as air and marine pollution including plastic, black carbon deposition on snow, remnants from oil, gas, and mining operations, increased land use due to expanding industrial activities leading to habitat loss, and, last but not least, waste and pollution from tourism. Recently, satellite data has revealed the expansion of infrastructure and growing anthropogenic impacts throughout the Arctic. Regarding the effect of warming on plant biodiversity, both responses are reported, i.e. decreases and increases in the number of plant species forming communities. Air pollution may affect tundra environments and its vegetation in different ways. Black carbon from diesel engines, fires, and other combustion processes can settle on snow, decreasing its ability to reflect sunlight which causes faster melting and changes in water availability for plants. In areas close to settlements, the direct effects of anthropogenic pollutants on vegetation may play a role. In Svalbard, local anthropogenic sources of emission, such as burning fossil fuels in local coal power plants, vehicle exhaust and mining activities contribute to the pollution of the environment and interact with plants. Moreover, wastewater discharged by Longyearbyen into the fjords delivers heavy metals and other pollutants that represent a potential risk to marine algae.
Arctic; POPs; pollutants; heavy metals; in-situ burning; oil spills
Ayala-Borda, P., Lovejoy, C., Power, M. and Rautio, M. (2021): Evidence of eutrophication in Arctic lakes. Arctic Science, 7(4): 859-871.
Bartsch, A., Pointner, G., Nitze, I., Efimova, A., Jakober, D., Ley, S., Högström, E., Grosse, G. and Schweitzer, P. (2021): Expanding infrastructure and growing anthropogenic impacts along Arctic coasts. Environmental Research Letters, 16: 115013. doi: 10.1088/1748-9326/ac3176
Becker, S., Halsall, C. J., Tych, W., Kallenborn, R., Su, Y. and Hung, H. (2008): Long-term trends in atmospheric concentrations of α- and γ-HCH in the Arctic provide insight into the effects of legislation and climatic fluctuations on contaminant levels. Atmospheric Environment, 42(35): 8225-8233. doi: 10.1016/j.atmosenv.2008.07.058
Ben Othman, H., Pick, F. R., Sakka Hlaili, A. and Leboulanger, C. (2023): Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae - A review. Journal of Hazardous Materials, 441: 129869. doi: 10.1016/j.jhazmat.2022.129869
Berríos-Rolón, P. J., Cotto, M. C. and Márquez, F. (2025): Polycyclic Aromatic Hydrocarbons (PAHs) in freshwater systems: A comprehensive review of sources, distribution, and ecotoxicological impacts. Toxics, 13(4): 321.
Bertò, M., Cappelletti, D., Barbaro, E., Varin, C., Gallet, J.-C., Markowicz, K., Rozwadowska, A., Mazzola, M., Crocchianti, S., Poto, L., Laj, P., Barbante, C. and Spolaor, A. (2021): Variability in black carbon mass concentration in surface snow at Svalbard. Atmospheric Chemistry and Physics, 21: 12479-12493. doi: 10.5194/acp-21-12479-2021
Bi, H., Wang, Z., Yue, R., Sui, J., Mulligan, C. N., Lee, K., Pegau, S., Chen, Z. and An, C. (2025): Oil spills in coastal regions of the Arctic and Subarctic: Environmental impacts, response tactics, and preparedness. The Science of the Total Environment, 958: 178025. doi: 10.1016/j.scitotenv.2024.178025
Camenzuli, D., Freidman, B. L. (2015): On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Research, 34(1): 24492.
Cepoi, L., Donţu, N., Şalaru, V. and Şalaru, V. (2016): Removal of organic pollutants from wastewater by cyanobacteria. In: I. Zinicovscaia, L. Cepoi (eds.): Cyanobacteria for bioremediation of wastewaters. Cham: Springer International Publishing, pp. 27–43.
Corsolini, S., Kannan, K., Imagawa, T., Focardi, S. and Giesy, J. P. (2002): Polychloronaphthalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environmental Science & Technology, 36(16): 3490-3496. doi: 10.1021/es025511v
Dallmann, W. K. (2015): Geoscience atlas of Svalbard. Rapport (Norsk polarinstitutt), no. 148. 292 p., ISBN: 9788276663129. http://hdl.handle.net/11250/2580810
Danouche, M., El Ghatchouli, N. and Arroussi, H. (2022): Overview of the management of heavy metals toxicity by microalgae. Journal of Applied Phycology, 34(1): 475-488.
Domingo, J. L. (2004): Polychlorinated naphthalenes in animal aquatic species and human exposure through the diet: A review. Journal of Chromatography A, 1054(1–2): 327-334. doi: 10.1016/j.chroma.2004.03.072
Dong, C., Xiong, S., Yang, R., Pei, Z., Li, Y., Zhang, Q. and Jiang, G. (2022): Polychlorinated naphthalenes (PCNs) in soils and plants from Svalbard, Arctic: Levels, distribution, and potential sources. The Science of the Total Environment, 849: 157883. doi: 10.1016/j.scitotenv.2022.157883
Echeveste, P., Galbán-Malagón, C., Dachs, J., Berrojalbiz, N. and Agustí, S. (2016): Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton. The Science of the Total Environment, 571: 34-41. doi: 10.1016/j.scitotenv.2016.07.111
Elster, J., Souquieres, C. E., Jadrná, I., Škaloud, P., Søreide, J. E. and Kvíderová, J. (2023): Invasive Vaucheria aff. compacta (Xanthophyceae) and its distribution over a high Arctic tidal flat in Svalbard. Estuarine, Coastal and Shelf Science, 281: 108206.
Fernandes, A., Falandysz, J. and Olivero-Verbel, J. (2020): A new focus on legacy pollutants: Chlorinated paraffins (CPs) and polychlorinated naphthalenes (PCNs). Chemosphere, 238: 124580. doi: 10.1016/j.chemosphere.2019.124580
Franzaring, J., van der Eerden, L. J. M. (2000): Accumulation of airborne persistent organic pollutants (POPs) in plants. Basic and Applied Ecology, 1(1): 25-30. doi: 10.1078/1439-1791-00003
Frost, G. V., Bhatt, U. S., Macander, M. J., Berner, L. T., Walker, D. A., Raynolds, M. K., Magnússon, R. Í., Bartsch, A., Bjerke, J. W., Epstein, H. E., Forbes, B. C., Goetz, S. J., Hoy, E. E., Karlsen, S. R., Kumpula, T., Lantz, T. C., Lara, M. J., López-Blanco, E., Montesano, P. M., Neigh, C. S. R., Nitze, I., Orndahl, K. M., Park, T., Phoenix, G. K., Rocha, A. V., Rogers, B. M., Schaepman-Strub, G., Tømmervik, H., Verdonen, M., Veremeeva, A., Virkkala, A.-M. and Waigl, C. F. (2025): The changing face of the Arctic: four decades of greening and implications for tundra ecosystems. Frontiers in Environmental Science, 13: 1525574. doi: 10.3389/fenvs.2025.1525574
Gabov, D., Vasilevich, M., Yakovleva, E. and Vasilevich, R. (2024): Effect of changes in the fuel type of thermal power plants on the spatial distribution and levels of PAH pollution in the Vorkuta agglomeration beyond the Arctic Circle. Atmospheric Environment, 329: 120543. doi: 10.1016/j.atmosenv.2024.120543
Gebru, T. B., Li, Y., Dong, C., Yang, Y., Yang, R., Pei, Z., Zhang, Q. and Jiang, G. (2023): Spatial and temporal trends of polychlorinated naphthalenes in the Arctic atmosphere at Ny-Ålesund and London Island, Svalbard. The Science of the Total Environment, 878: 163023. doi: 10.1016/j.scitotenv.2023.163023
Hansen, K. M., Halsall, C. J., Christensen, J. H., Brandt, J., Frohn, L. M., Geels, C. and Skjøth, C. A. (2008): The role of the snowpack on the fate of alpha-HCH in an atmospheric chemistry-transport model. Environmental Science & Technology, 42(8): 2943-2948. doi: 10.1021/es7030328
Herbert, B. M., Halsall, C. J., Villa, S., Fitzpatrick, L., Jones, K. C., Lee, R. G. and Kallenborn, R. (2005): Polychlorinated naphthalenes in air and snow in the Norwegian Arctic: A local source or an Eastern Arctic phenomenon? The Science of the Total Environment, 342(1-3): 145-160. doi: 10.1016/j.scitotenv.2004.12.029
Holm, E. B., Brandvik, P. J. and Steinnes, E. (2003): Pollution in acid mine drainage from mine tailings in Svalbard, Norwegian Arctic. Journal de Physique IV, 107: 625-628. doi: 10.1051/jp4:20030381
Johansen, S., Poste, A., Allan, I., Evenset, A. and Carlsson, P. (2021): Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard). Environmental Pollution, 281: 116963.
Kang, S., Zhang, Y., Qian, Y. and Wang, H. (2020): A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Science Reviews, 210: 103346. doi: 10.1016/j.earscirev.2020.103346
Karnaeva, A., Kulikova, O., Mazlova, E. and Buryak, A. (2021): Aged diesel and heavy metal pollution in the Arctic tundra (Yamal Peninsula, Russia). The Science of the Total Environment, 792: 148471. doi: 10.1016/j.scitotenv.2021.148471
Kevan, P. G., Forbes, B. C., Kevan, S. M. and Behan-Pelletier, V. (1995): Vehicle tracks on high Arctic tundra: Their effects on the soil, vegetation, and soil arthropods. Journal of Applied Ecology, 32(3): 655-667. doi: 10.2307/2404660
Klán, P., Klánová, J., Holoubek, I. and Čupr, P. (2003): Photochemical activity of organic compounds in ice induced by sunlight irradiation: The Svalbard project. Geophysical Research Letters, 30(6): 1313. doi: 10.1029/2002GL016385
Kosek, K., Polkowska, Ż., Żyszka, B. and Lipok, J. (2016): Phytoplankton communities of polar regions--Diversity depending on environmental conditions and chemical anthropopressure. Journal of Environmental Management, 171: 243-259. doi: 10.1016/j.jenvman.2016.01.026
Kosek, K., Ruman, M. (2021): Arctic freshwater environment altered by the accumulation of commonly determined and potentially new POPs. Water, 13(13): 1739. doi: 10.3390/w13131739
Kruse, F., Nobles, G. R., de Jong, M., van Bodegom, R. M. K., van Oortmerssen, G. J. M. (Gert), Kooistra, J., van den Berg, M., Küchelmann, H. C., Schepers, M., Leusink, E. H. P., Cornelder, B. A., Kruijer, J. D. and Dee, M. W. (2021): Human–environment interactions at a short-lived Arctic mine and the long-term response of the local tundra vegetation. Polar Record, 57: e3. doi: 10.1017/S0032247420000418
Langer, M., von Deimling, T. S., Westermann, S., Rolph, R., Rutte, R., Antonova, S., Rachold, V., Schultz, M., Oehme, A. and Grosse, G. (2023): Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination. Nature Communications, 14(1): 1721. doi: 10.1038/s41467-023-37276-4
Li, Y. F., Kallenborn, R. and Zhang, Z. (2023): Persistent organic pollutants and chemicals of emerging Arctic concern in the Arctic environment. Environmental Science and Ecotechnology, 18: 100332. doi: 10.1016/j.ese.2023.100332
Lukavský, J., Furnadjieva, S. and Cepák, V. (2003): Toxicity of metals, Al, Cd, Co, Cr, Cu, Fen, Ni, Pb, and Zn on microalgae, using microplate bioassay 1: Chlorella kessleri, Scenedesmus quadricauda, Sc. subspicatus and Raphidocelis subcapitata (Selenastrum capricornutum). Algological Studies, 110: 127-141.
Marquès, M., Sierra, J., Drotikova, T., Mari, M., Nadal, M. and Domingo, J. L. (2017): Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard. Environmental Research, 159: 202-211.
Mori, T., Goto-Azuma, K., Kondo, Y., Ogawa-Tsukagawa, Y., Miura, K., Hirabayashi, M., Oshima, N., Koike, M., Kupiainen, K., Moteki, N., Ohata, S., Sinha, P. R., Sugiura, K., Aoki, T., Schneebeli, M., Steffen, K., Sato, A., Tsushima, A., Makarov, V., Omiya, S., Sugimoto, A., Takano, S. and Nagatsuka, N. (2019): Black carbon and inorganic aerosols in Arctic snowpack. Journal of Geophysical Research: Atmospheres, 124(23): 13,325-13,356. doi: 10.1029/2019JD030623
Neby, M., Semenchuk, P., Neby, E. and Cooper, E. J. (2022): Comparison of methods for revegetation of vehicle tracks in High Arctic tundra on Svalbard. Arctic Science, 8(3): 1006-1025. doi: 10.1139/as-2021-0016
Pakhomova, S., Berezina, A., Zhdanov, I. and Yakushev, E. (2024): Microplastic fate in Arctic coastal waters: Accumulation hotspots and role of rivers in Svalbard. Frontiers in Marine Science, 11: 1392680. doi: 10.3389/fmars.2024.1392680
Paniagua-Michel, J., Banat, I. M. (2024): Unravelling diatoms’ potential for the bioremediation of oil hydrocarbons in marine environments. Clean Technologies, 6(1): 93-115.
Pawlak, F., Koziol, K., Wilczyńska-Michalik, W., Worosz, M., Michalik, M., Lehmann-Konera, S. and Polkowska, Ż. (2024): Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019). Water, 16(11): 1486. doi: 10.3390/w16111486
Perryman, C. R., Wirsing, J., Bennett, K. A., Brennick, O., Perry, A. L., Williamson, N. and Ernakovich, J. G. (2020): Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. PLoS One, 15(6): e0233297.
Petersen, D. G., Reichenberg, F. and Dahllöf, I. (2008): Phototoxicity of pyrene affects benthic algae and bacteria from the Arctic. Environmental Science & Technology, 42(4): 1371-1376. doi: 10.1021/es071854n
Piatt, J. F., Lensink, C. J., Butler, W., Kendziorek, M. and Nysewander, D. R. (1990): Immediate Impact of the “Exxon Valdez” Oil Spill on Marine Birds. The Auk, 107(2): 387-397. doi: 10.2307/4087623
Rajaram, R., Ganeshkumar, A. and Charles, P. E. (2023): Ecological risk assessment of metals in the Arctic environment with emphasis on Kongsfjorden Fjord and freshwater lakes of Ny-Ålesund, Svalbard. Chemosphere, 310: 136737.
Reimann, S., Kallenborn, R. and Schmidbauer, N. (2009): Severe aromatic hydrocarbon pollution in the Arctic town of Longyearbyen (Svalbard) caused by snowmobile emissions. Environmental Science & Technology, 43(13): 4791-4795. doi: 10.1021/es900449x
Rotander, A., van Bavel, B., Rigét, F., Auðunsson, G. A., Polder, A., Gabrielsen, G. W., Víkingsson, G., Mikkelsen, B. and Dam, M. (2012): Polychlorinated naphthalenes (PCNs) in sub-Arctic and Arctic marine mammals, 1986-2009. Environmental Pollution, 164: 118-124. doi: 10.1016/j.envpol.2012.01.035
Samecka-Cymerman, A., Wojtuń, B., Rajsz, A., Mróz, L., Kolon-Jaremczak, M., Kopeć, M., Wasowicz, P., Kosiba, P. and Rudecki, A. (2025): Sanionia uncinata as a metal bioindicator in the European Arctic. Polar Biology, 48: 74. doi: 10.1007/s00300-025-03394-6
Shaji, A., Gopinath, A., Hussain, M. S., Prabhakaran, S. and Krishnan, A. (2024): Pesticides under the category of persistent organic pollutants and emerging contaminants in surface sediments of an Arctic Fjord and nearby lakes. Marine Pollution Bulletin, 208: 117010. doi: 10.1016/j.marpolbul.2024.117010
Schæbel, L. K., Bonefeld-Jørgensen, E. C., Vestergaard, H. and Andersen, S. (2017): The influence of persistent organic pollutants in the traditional Inuit diet on markers of inflammation. PloS one, 12(5): e0177781. doi: 10.1371/journal.pone.0177781
Sinkkonen, S., Paasivirta, J. (2000): Polychlorinated organic compounds in the Arctic cod liver: Trends and profiles. Chemosphere, 40(6): 619-626. doi: 10.1016/s0045-6535(99)00309-4
Sivarajah, B., Simmatis, B., Favot, E. J., Palmer, M. J. and Smol, J. P. (2021): Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape. Harmful Algae, 105: 102036.
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. and Painter, T. (2018): Radiative forcing by light-absorbing particles in snow. Nature Climate Change, 8: 964-971. doi: 10.1038/s41558-018-0296-5
Telyatnikov, M. Y. (2022): Dynamics of the phytodiversity of natural ecosystems affected by oil products in the Norilsk industrial district. Contemporary Problems of Ecology, 15: 160-179. doi: 10.1134/S1995425522020093
Tomar, R. S., Atre, R., Sharma, D., Rai-Kalal, P. and Jajoo, A. (2023): Light intensity affects tolerance of pyrene in Chlorella vulgaris and Scenedesmus acutus. Photosynthetica, 61(SI): 168-176 (Special issue on Recent advances in photomodulation in higher plants, algae, and bryophyte). doi: 10.32615/ps.2022.044
Touliabah, H. E. S., El-Sheekh, M. M., Ismail, M. M. and El-Kassas, H. (2022): A review of microalgae-and cyanobacteria-based biodegradation of organic pollutants. Molecules, 27: 1141.
Vorkamp, K., Muir, D. C. G. (2016): A circumarctic review of contaminants in ringed seals. In: R. Kallenborn (eds.): Implications and Consequences of Anthropogenic Pollution in Polar Environments. From Pole to Pole. Springer, Berlin, Heidelberg, pp. 229–251. doi: 10.1007/978-3-642-12315-3_12
Walker, D. A., Kofinas, G., Raynolds, M., Kanevskiy, M., Shur, Y., Ambrosius, K., Buchhorn, M., Matayshak, G., Romanovsky, V. and Wirth, L. (2015): Cumulative effects of infrastructure and climate in the permafrost landscapes of the Prudhoe Bay oilfield, Alaska’ in Rapid Arctic Transitions due to Infrastructure and Climate (RATIC): A contribution to ICARP III, eds DAP Walker & JL Peirce, University of Alaska, Fairbanks, Alaska, pp. 2–11.
Wang, Z., An, C., Lee, K., Owens, E., Boufadel, M. and Feng, Q. (2022): Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada. Journal of Environmental Management, 301: 113913. doi: 10.1016/j.jenvman.2021.113913
Weber, R., Rasmussen, R. O., Zalkind, L., Karlsdóttir, A., Johansen, S. T. F., Terräs, J. and Nilsson, K. (2017): Urbanisation and land use management in the Arctic: An investigative overview. In: G. Fondahl, G. Wilson (eds.): Northern Sustainabilities: Understanding and Addressing Change in the Circumpolar World. Springer Polar Sciences. Springer, Cham., pp. 269–284. doi: 10.1007/978-3-319-46150-2_20
Wegeberg, S., Fritt-Rasmussen, J., Geertz-Hansen, O., Wiktor, J., Jr, Bogø-Wilms, L., Larsen, M. B., Renvald, L. and Gustavson, K. (2021): Coastline in-situ burning of oil spills in the Arctic. Studies of the environmental impacts on the littoral zone community. Marine Pollution Bulletin, 173(Pt B): 113128. doi: 10.1016/j.marpolbul.2021.113128
Wojtuń, B., Polechońska, L., Pech, P., Mielcarska, K., Samecka-Cymerman, A., Szymański, W., Kolon, M., Kopeć, M., Stadnik, K. and Kempers, A. J. (2019): Sanionia uncinata and Salix polaris as bioindicators of trace element pollution in the High Arctic: A case study at Longyearbyen, Spitsbergen, Norway. Polar Biology, 42: 1287-1297. doi: 10.1007/s00300-019-02517-0
Wei, Y., He, J., Xue, Y., Nie, Y., Liu, X. and Wu, L. (2022): Spatial distribution of multi-elements in moss revealing heavy metal precipitation in London Island, Svalbard, Arctic. Environmental Pollution, 315: 120398. doi: 10.1016/j.envpol.2022.120398
Xiao, X., Li, W., Jin, M., Zhang, L., Qin, L. and Geng, W. (2023): Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Marine Environmental Research, 183: 105805.
Yang, Y., Sui, J., Tian, Y., Qiao, R., He, D. and Li, M. (2025): Comparison of polycyclic aromatic hydrocarbon removal efficiency, removal pathways, and biomass pyrolysis characteristics of seven microalgal strains. Journal of Water Process Engineering, 76: 108160.
Zanatta, M., Mertes, S., Jourdan, O., Dupuy, R., Järvinen, E., Schnaiter, M., Eppers, O., Schneider, J., Jurányi, Z. and Herber, A. (2023): Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer. Atmospheric Chemistry and Physics, 23: 7955-7973. doi: 10.5194/acp-23-7955-2023
Zou, Q., Zhang, Q., Yang, R., Li, Y., Pei, Z., Liu, M., Zhang, G., Ji, F., Zhang, X., Yang, X. and Jiang, G. (2024): Non-negligible polyhalogenated carbazoles in arctic soils and sediments: Occurrence, target and suspect screening, and potential sources. Environmental Science & Technology, 58(52): 23169-23179. doi: 10.1021/acs.est.4c09194
Web sources / Other sources
[1] Arnold, E. (2006): Alaska Oil Spill Blamed on Poor Pipe Maintenance. NPR Environment.
[2] Fingas, M. (2013): Surface-washing Agents: An Update, Merv Fingas Spill Science, Edmonton, Alberta.
[3] Law, W. H. (2010): Regulation, H., Unprotected, L.A. The BP Catastrophe.
Copyright © 2026 Josef Hájek, Miloš Barták, Jana Kvíderová
