Environmental changes in Svalbard since the termination of the Little Ice Age: Towards a warmer and less icy future
Vol.15,No.S(2025)
CPR Special issue
Svalbard has experienced significant warming since the end of the Little Ice Age (LIA; around 1900 CE). Since the LIA, air temperatures have risen almost continuously, with even more accelerated warming trend recorded in recent decades. These climatic shifts have had serious impacts, particularly on the cryosphere but also on landscape dynamics, through an accelerated hydrological cycle and the intensification of various geomorphic processes. Surprisingly, Svalbard experienced a warmer climate for much of the Holocene compared to today, with only a few colder periods, the most pronounced being the LIA. In other words, Svalbard, as it was known to early polar explorers at the end of the 19th century, was at its maximum Holocene glacier extent. Nowadays, the environment is returning to its usual mode of operation, with a less glaciated landscape. However, the current rate of change is unprecedented. Here, we document the most striking landscape changes with a series of repeated photographs, comparing the landscape at the glacier’s maximum extent (in 1908) with photographs taken at the same locations recently. We demonstrate the rapid evolution of glacier-connected geosystems and intense paraglaciation, where glacier-dominated processes are being replaced by fluvial, slope or aeolian forces. In contrast, landscapes that were not directly connected to glaciers appeared relatively stable and resilient to climatic forcings. As the landscape seeks to reach a new equilibrium after glacier retreat, this also triggers various natural hazards, such as slope failures, avalanches and floods, that may pose risks to human society and infrastructure. Together with the massive thawing of permafrost, these changes could endanger economic activities, tourism and even the traditional way of life of Indigenous communities in the Arctic.
Arctic; glacier retreat; deglaciated landscape dynamics; coastal processes; historic photographs
Allaart, L., Friis, N., Ingólfsson, Ó., Håkansson, L., Noormets, R., Farnsworth, W. R., Mertes, J. and Schomacker, A. (2018): Drumlins in the Nordenskiöldbreen forefield, Svalbard. GFF, 140(2): 170-188. doi: 10.1080/11035897.2018.1466832
Allaart, L., Schomacker, A., Håkansson, L., Farnsworth, W. R., Brynjólfsson, S., Grumstad, A. and Kjellman, S. E. (2021): Geomorphology and surficial geology of the Femmilsjøen area, northern Spitsbergen. Geomorphology, 382: 107693. doi: 10.1016/j.geomorph.2021.107693
Aradóttir, N., Ingólfsson, Ó., Noormets, R., Benediktsson, Í., Ben-Yehoshua, D., Håkansson, L. and Schomacker, A. (2019): Glacial geomorphology of Trygghamna, western Svalbard – Integrating terrestrial and submarine archives for a better understanding of past glacial dynamics. Geomorphology, 344: 75-89. doi: 10.1016/j.geomorph.2019.07.007
Ballantyne, C. K. (2002): Paraglacial geomorphology. Quaternary Science Reviews, 21: 1935-2017. doi: 10.1016/S0277-3791(02)00005-7
Benn, D. I., Hewitt, I. J. and Luckman, A. J. (2023): Enthalpy balance theory unifies diverse glacier surge behaviour. Annals of Glaciology, 63: 88-94. doi: 10.1017/aog.2023.23
Bernhardt, H., Reiss, D., Hiesinger, H., Hauber, E. and Johnsson, A. (2017): Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard). Geomorphology, 296: 132-141. doi: 10.1016/j.geomorph.2017.08.0
Błaszkiewicz, M., Andrzejewski, L., Dudek, J., Sobota, I. and Czarnecki, K. (2023): The role of dead ice in transforming glacier forelands under the rapid climate warming of recent decades, Oscar II land Svalbard. Land Degradation and Development, 34: 4328-4345. doi: 10.1002/ldr.4780
Bradley, J. A., Singarayer, J. S. and Anesio, A. M. (2014): Microbial community dynamics in the forefield of glaciers. Proceedings of the Royal Society B, 281: 219-225. doi: 10.1098/rspb.2014.0882
Dallmann, W. K. (Ed.) (2015): Geoscience atlas of Svalbard. Tromsø, Norsk Polarinstitutt, Report series no. 148, 292 p.
de Geer, G. (1910): Guide de l'excursion au Spitsberg. Excursion A1. Stockholm, Sweden: XI International Geological Congress, pp. 305–310.
Dudek, J., Wieczorek, I., Suwiński, M. K. and Strzelecki, M. C. (2023): Paraglacial transformation and ice-dammed lake dynamics in a high Arctic glacier foreland, Gåsbreen, Svalbard. Land Degradation and Development, 34(14): 4252-4271. doi: 10.1002/ldr.4773
Evans, D. J. A., Strzelecki, M., Milledge, D. G. and Orton, C. (2012): Hørbyebreen polythermal glacial landsystem, Svalbard. Journal of Maps, 8: 1-11. doi: 10.1080/17445647. 2012.68077
Ewertowski, M. W. (2014): Recent transformation in the high-Arctic glacier landsystem. Ragnarbreen, Svalbard. Geografiska Annaler: Series A, Physical Geography, 96: 265-285. doi: 10.1111/geoa.12049
Ewertowski, M. W., Evans, D. J. A., Roberts, D. H. and Tomczyk, A. M. (2016): Glacial geomorphology of the terrestrial margins of the tidewater glacier, Nordenskiöldbreen, Svalbard. Journal of Maps, 12: 476-487. doi: 10.1080/17445647.2016.1192329
Ewertowski, M. W., Evans, D. J. A., Roberts, D. H., Tomczyk, A. M., Ewertowski, W. and Pleskot, K. (2019): Quantification of historical landscape change on the foreland of a receding polythermal glacier, Hørbyebreen, Svalbard. Geomorphology, 325: 40-54. doi: 10.1016/j.geomorph.2018.09.027
Ewertowski, M. W., Tomczyk, A. M. (2020): Reactivation of temporarily stabilized ice-cored moraines in front of polythermal glaciers: Gravitational mass movements as the most important geomorphological agents for the redistribution of sediments (a case study from Ebbabreen and Ragnarbreen, Svalbard). Geomorphology, 350: 106952. doi: 10.1016/ j.geomorph.2019.10695
Farnsworth, W. R., Ingolfsson, O., Retelle, M. and Schomacker, A. (2016): Over 400 previously undocumented Svalbard surge-type glaciers identified. Geomorphology, 264: 52-60. doi: 10.1016/j.geomorph.2016.03.025
Farnsworth, W. R., Ingólfsson, Ó., Noormets, R., Allaart, L., Alexanderson, H., Henriksen, M. and Schomacker, A. (2017): Dynamic Holocene glacial history of St. Jonsfjorden, Svalbard. Boreas, 46: 585-603. doi: 10.1111/bor.12269
Finne, E. A., Varpe, Ø., Durant, J. M., Gabrielsen, G. W. and Poste, A. E. (2024): Nutrient fluxes from an Arctic seabird colony to the adjacent coastal marine ecosystem. Polar Biology, 47: 859-872. doi: 10.1007/s00300-022-03024-5
Forwick, M., Vorren, T. O. (2009): Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 258-274. doi: 10.1016/j.palaeo.2009.06.026
Førland, E. J., Isaksen, K., Lutz, J., Hanssen-Bauer, I., Schuler, T. V., Dobler, A., Gjelten, H. M. and Vikhamar-Schuler, D. (2020): Measured and modeled historical precipitation trends for Svalbard. Journal of Hydrometeorology, 21: 1279-1296. doi: 10.1175/JHM-D-19-0252.1
Geyman, E. C., van Pelt, W. J. J., Maloof, A. C., Aas, H. F. and Kohler, J. (2022): Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature, 601: 374-379. doi: 10.1038/s41586-021-04314-4
Grünberg, I., Groenke, B., Westermann, S. and Boike, J. (2024): Permafrost and active layer temperature and freeze/thaw timing reflect climatic trends at Bayelva, Svalbard. Journal of Geophysical Research: Earth Surface, 129: e2024JF007648. doi: 10.1029/2024JF007648
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A. B. and Sorteberg, A. (Eds.) (2019): Climate in Svalbard 2100 – a knowledge base for climate adaptation. Norway, Norwegian Centre of Climate Services (NCCS) for Norwegian Environment Agency (Miljødirektoratet), 208 p. (NCCS report 1/2019). doi: 10.25607/OBP-888
Holmlund, E. (2021): Aldegondabreen glacier change since 1910 from structure-from-motion photogrammetry of archived terrestrial and aerial photographs: Utility of a historic archive to obtain century-scale Svalbard glacier mass losses. Journal of Glaciology, 67: 107-116. doi: 10.1017/jog.2020.89
Hughes, A. L. C., Winsborrow, M. C. M., Greenwood, S. L. (2021): European ice sheet complex evolution during the last glacial maximum (29-19 ka). In: D. Palacios, P. D. Hughes, J. M. García-Ruiz, N. Andrés (Eds.): European Glacial Landscapes. Maximum Extent of Glaciations, Elsevier, pp. 361–372.
Huss, M., Hock, R. (2018): Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8: 135-140. doi: 10.1038/s41558-017-0049-x
Isaksen, K., Nordli, Ø., Førland, E. J., Łupikasza, E., Eastwood, S. and Niedźwiedź, T. (2016): Recent warming on Spitsbergen – influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research-Atmospheres, 121: 11913-11931. doi: 10.1002/2016JD025606
Isaksen, K., Lutz, J., Macdonald Sørensen, A., Godøy, Ø., Ferrighi, L, Eastwood, S. and Aaboe, S. (2022): Advances in operational permafrost monitoring on Svalbard and in Norway. Environmental Research Letters, 17: 095012. doi: 10.1088/1748-9326/ac8e1c
Jaskólski, M., Pawłowski, L. and Strzelecki, M. (2018): High Arctic coasts at risk-the case study of coastal zone development and degradation associated with climate changes and multidirectional human impacts in Longyearbyen (Adventfjorden, Svalbard). Land Degradation and Development, 29: 2514-2524. doi: 10.1002/ldr.2974
Kavan, J. (2020a): Early twentieth century evolution of Ferdinand glacier, Svalbard, based on historic photographs and Structure-from-Motion technique. Geografiska Annaler Series A Physical Geography, 102: 57-67. doi: 10.1080/04353676.2020.1715124
Kavan, J. (2020b): Post-Little Ice Age Development of Coast in the Locality of Kapp Napier, Central Spitsbergen, Svalbard Archipelago. Marine Geodesy, 43: 234-247. doi: 10.1080/01490419.2019.1674429
Kavan, J., Halašková, B. (2021): The rise and fall of Pyramiden: The story of a town in a wider geopolitical and environmental context. Polar Record, 58: e10. doi: 10.1017/S0032247422000018
Kavan, J., Láska, K., Nawrot, A. and Wawrzyniak, T. (2020): High latitude dust transport altitude pattern revealed from deposition on snow, Svalbard. Atmosphere, 11: 1318. doi: 10.3390/atmos11121318
Kavan, J., Haagmans, V. (2021): Seasonal dynamics of snow ablation on selected glaciers in central Spitsbergen derived from Sentinel-2 satellite images. Journal of Glaciology, 67: 961-966. doi: 10.1017/jog.2021.36
Kavan, J., Tallentire, G. D., Demidionov, M., Dudek, J. and Strzelecki, M. C. (2022a): Fifty years of tidewater glacier surface elevation and retreat dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago). Remote Sensing, 14: 354. doi: 10.3390/rs14020354
Kavan, J., Wieczorek, I., Tallentire, G. D., Demidionov, M., Uher, J. and Strzelecki, M. C. (2022b): Estimating Suspended Sediment Fluxes from the Largest Glacial Lake in Svalbard to Fjord System Using Sentinel-2 Data: Trebrevatnet Case Study. Water, 14: 1840. doi: 10.3390/w14121840
Kavan, J., Strzelecki, M. C. (2023): Glacier decay boosts the formation of new Arctic coastal environments – Perspectives from Svalbard. Land Degradation and Development, 34: 3467-3474. doi: 10.1002/ldr.4695
Kavan, J., Luláková, P., Malecki, J. and Strzelecki, M. C. (2024a): Capturing the switch from marine to land-terminating glacier in Svalbard: 126 years of Nordenskiöldbreen retreat history. Journal of Glaciology, 70: 1-11. doi: 10.1017/jog.2023.92
Kavan, J., Strzelecki, M. C., Benn, D. I., Luckman, A., Roman, M. and Zagórski, P. (2024b): Glacier surge as a trigger for the fastest delta growth in the Arctic. Communications Earth and Environment, 5: 700. doi: 10.1038/s43247-024-01877-8
Kavan, J., Szczypińska, M., Kochtitzky, W. Farquharson, L., Bendixen, M. and Strzelecki, M. C. (2025): New coasts emerging from the retreat of Northern Hemisphere marine-terminating glaciers in the twenty-first century. Nature Climate Change, 15: 528-537. doi: 10.1038/s41558-025-02282-5
Kierulf, H. P., Kohler, J., Boy, J.-P., Geyman, E. C., Mémin, A., Omang, O. C. D., Steffen, H. and Steffen, R. (2022): Time-varying uplift in Svalbard – An effect of glacial changes. Geophysical Journal International, 231: 1518-1534. doi: 10.1093/gji/ggac264
Kim, D., Jo, J., Nam, S. I. and Choi, K. (2022): Morphodynamic evolution of paraglacial spit complexes on a tide-influenced Arctic fjord delta (Dicksonfjorden, Svalbard). Marine Geology, 447: 106800. doi: 10.1016/j.margeo.2022.106800
Kjærnet, T. (2000): Minerallokaliteter på Svalbard. Norsk Bergverksmuseum Skrift, 17: 12-18.
Klimešová, J., Prach, K. and Bernardová, A. (2012): Using available information to assess the potential effects of climate change on vegetation in the High Arctic: North Billjefjorden, Central Spitsbergen (Svalbard). AMBIO, 41: 435-445. doi: 10.1007/s13280-011-0235-4
Lazzaro, A., Abegg, C. and Zeyer, J. (2010): Pioneer communities in the forefields of retreating glaciers: how microbes adapt to a challenging environment. In: A. Méndez-Vilas (ed.): Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz, Spain: Formatex, pp. 43–52.
Liljequist, G. H. (1993): High latitudes – a history of Swedish polar travels and research. Stockholm: Swedish Polar Research Secretariat, 607 p.
Long, A. J., Strzelecki, M. C., Lloyd, J. M. and Bryant, C. L. (2012): Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews, 48: 61-66. doi: 10.1016/j.quascirev.2012.06.009
Luláková, P., Šantrůčková, H., Elster, J., Hanáček, M., Kotas, P., Meador, T., Tejnecký, V. and Bárta, J. (2023): Mineral substrate quality determines the initial soil microbial development in front of the Nordenskiöldbreen, Svalbard. FEMS Microbiology Ecology, 99: fiad104. doi: 10.1093/femsec/fiad104
Malecki, J., Faucherre, S. and Strzelecki, M. C. (2013): Post−surge geometry and thermal structure of Hørbyebreen, central Spitsbergen. Polish Polar Research, 34: 305-321. doi: 10.2478/popore−2013−0019
Małecki, J. (2016): Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. The Cryosphere, 10: 1317-1329. doi: 10.5194/tc-10-1317-2016
Mangerud, J., Dokken, T., Hebbeln, D., Heggen, B., Ingólfsson, Ó., Landvik, J. Y., Mejdahl, V., Svendsen, J. I. and Vorren, T. O. (1998): Fluctuations of the Svalbard-Barents sea ice sheet during the last 150 000 years. Quaternary Science Reviews, 17: 11-42.
Mangerud, J., Svendsen, J. I. (2018): The Holocene thermal maximum around Svalbard, Arctic North Atlantic; molluscs show early and exceptional warmth. The Holocene, 28: 65-83. doi: 10.1177/0959683617715701
Mannerfelt, E.S., Hodson, A.J., Håkansson, L. and Lovell. H. (2024): Dynamic LIA advances hastened the demise of small valley glaciers in central Svalbard. Arctic Science, 10: 815-833. doi: 10.1139/as-2024-0024
Martín-Moreno, R., Allende Álvarez, F. and Hagen, J. O. (2017): ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. The Holocene, 27: 1379-1390. doi: 10.1177/0959683617693904
McCerery, R., Davies, B. J., Lovell, H., Pearce, D. A., Calvo-Ryan, R., Małecki, J. and Woodward, J. (2024): Terrestrial glacial geomorphology of surge-type and non-surge-type glaciers on Svalbard. Journal of Maps, 20. doi: 10.1080/17445647.2024.2362277
Mercier, D., Étienne, S., Sellier, D. and André, M. F. (2009): Paraglacial gullying of sediment-mantled slopes: a case study of Colletthøgda, Kongsfjorden area, West Spitsbergen (Svalbard). Earth Surface Processes and Landforms, 34: 1772-1789. doi: 10.1002/esp.1862
Nehyba, S., Hanáček, M., Engel, Z. and Stachoň, Z. (2017): Rise and fall of a small ice-dammed lake - Role of deglaciation processes and morphology. Geomorphology, 295: 662-679. doi: 10.1016/j.geomorph.2017.08.019
Nicu, I. C., Lombardo, L. and Rubensdotter, L. (2021a): Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land, Svalbard. Landslides, 18: 2935-2947. doi: 10.1007/s10346-021-01684-8
Nicu, I. C., Rubensdotter, L., Stalsberg, K. and Nau, E. (2021b): Coastal Erosion of Arctic Cultural Heritage in Danger: A Case Study from Svalbard, Norway. Water, 13: 784. doi: 10.3390/w13060784
Nicu, I. C., Elia, L., Rubensdotter, L., Tanyaş, H. and Lombardo, L. (2023): Multi-hazard susceptibility mapping of cryospheric hazards in a high-Arctic environment: Svalbard Archipelago, Earth System Science Data, 15: 447-464. doi: 10.5194/essd-15-447-2023
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J. and Isaksen, K. (2014): Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Research, 33. doi: 10.3402/polar.v33.21349
Nordli, Ø., Wyszyński P., Gjelten H. M., Isaksen K., Łupikasza E., Niedźwiedź T. and Przybylak R. (2020): Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018. Polar Research, 39. doi: 10.33265/polar.v39.3614
Prach, K., Rachlewicz, G. (2012): Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research, 33: 319-328. doi: 10.2478/v10183-012-0022-3
Porter, C., Howat, I., Noh, M., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G. and Morin, P. (2023): “ArcticDEM - Mosaics, Version 4.1”. https://doi.org/10.7910/DVN/3VDC4W, Harvard Dataverse, V1, [accessed 15 December 2024].
Przybylak, R., Arazny, A., Nordli, O., Finkelnburg, R., Kejna, M., Budzik, T., Migala, K., Sikora, S., Puczko, D., Rymer, K. and Rachlewicz, G. (2014): Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. International Journal of Climatology, 34: 3702-3719. doi: 10.1002/joc.3937
Rachlewicz, G., Szczuciński, W. and Ewertowski, M. (2007): Post−“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28: 159-186.
Rantanen, M., Karpechko, A.Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T. and Laaksonen, A. (2022): The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth and Environment, 3: 168. doi: 10.1038/s43247-022-00498-3
Rymer, K. G., Rachlewicz, G., Buchwal, A., Temme, A.J.A.M., Reimann, T. and van der Meij, W. M. (2022): Contemporary and past aeolian deposition rates in periglacial conditions (Ebba Valley, central Spitsbergen). CATENA, 211: 105974. doi: 10.1016/j.catena.2021.105974
Rymer, K. G., Wachecka-Kotkowska, L. (2024): Sources of the aeolian material in periglacial conditions based on quartz grain analysis, Ebba valley, Svalbard. Quaestiones Geographicae, 43: 17-29. doi: 10.14746/quageo-2024-0034
Sessford, E., Strzelecki, M. C. and Hormes, A. (2015): Reconstruction of Holocene patterns of change in a High Arctic coastal landscape, Southern Sassenfjorden, Svalbard. Geomorphology, 234: 98-107. doi: 10.1016/j.geomorph.2014.12.04
Strand, S. M., Christiansen, H. H., Johansson, M., Åkerman, J. and Humlum, O. (2021): Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic. Permafrost and Periglacial Processes, 32: 47-58. doi: 10.1002/ppp.2088
Strzelecki, M. C., Long, A. J. and Lloyd, J. M. (2017): Post-Little Ice Age Development of a High Arctic Paraglacial Beach Complex. Permafrost and Periglacial Processes, 28: 4-17. doi: 10.1002/ppp.1879
Strzelecki, M. C., Long, A. J., Lloyd, J. M., Małecki, J., Zagórski, P., Pawłowski, Ł. and Jaskólski, M. W. (2018): The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in Central Spitsbergen (Billefjorden, Svalbard). Land Degradation and Development, 29: 1962-1978. doi: 10.1002/ldr.2923
Szczucinski, W., Zajaczkowski, M. and Scholten, J. (2009): Sediment accumulation rates in subpolar fjords – impact of post-little ice age glaciers retreat, Billefjorden, Svalbard. Estuarine, Coastal and Shelf Science, 85: 345-356. doi: 10.1016/j.ecss.2009.08.021
Těšitel, J., Těšitelová, T., Bernardová, A., Janková Drdová, E., Lučanová, M. and Klimešová, J. (2014): Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard. Polar Research, 33: 20797. doi: 10.3402/polar.v33.20797
Tomczyk, A.M., Ewertowski, M.W., Stawska, M. and Rachlewicz, G. (2019): Detailed alluvial fan geomorphology in a high-arctic periglacial environment, Svalbard: Application of unmanned aerial vehicle (UAV) surveys. Journal of Maps, 15: 460-473, doi: 10.1080/17445647.2019.1611498
Tomczyk, A. M. (2021): Morphometry and morphology of fan-shaped landforms in the high-Arctic settings of central Spitsbergen, Svalbard. Geomorphology, 392: 107899, doi: 10.1016/j.geomorph.2021.107899
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B. and Reijmer, C. (2019): A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). The Cryosphere, 13: 2259-2280. doi: 10.5194/tc-13-2259-2019
van der Bilt, W. G. M., D'Andrea, W. J., Werner, J. P. and Bakke, J. (2019): Early Holocene temperature oscillations exceed amplitude of observed and projected warming in Svalbard lakes. Geophysical Research Letters, 46: 14732-14741. doi: 10.1029/2019GL084384
Wickström, S., Jonassen, M. O., Cassano, J. J. and Vihma, T. (2020): Present Temperature, Precipitation, and Rain-on-Snow Climate in Svalbard. Journal of Geophysical Research: Atmospheres, 125: e2019JD032155. doi: 10.1029/2019JD032155
Wieczorek, I., Strzelecki, M. C., Stachnik, Ł., Yde, J. C. and Małecki, J. (2023): Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types. Journal of Glaciology, 69: 1449-1465. doi: 10.1017/jog.2023.34
Wołoszyn, A., Owczarek, Z., Wieczorek, I., Kasprzak, M. and Strzelecki, M. C. (2022): Glacial outburst floods responsible for major environmental shift in Arctic coastal catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sensing, 14: 6325. doi: 10.3390/rs14246325
Ziółek M., Melke J. (2014): The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen. Polar Research, 33. doi: 10.3402/polar.v33.19986
Web sources / Other sources
[1] https://info.alvin-portal.org
[2] Norsk Polar Institute (2024): Places names of Svalbard. https://placenames.npolar.no/ Accessed December 18, 2024
Copyright © 2026 Jan Kavan, Martin Hanáček
