Desiccation resistence of photosynthetic processes in photosystem II of Antarctic moss Sanionia uncinata assessed by two chlorophyll fluorescence methods

Vol.15,No.1(2025)

Abstract

Dehydration-induced decrease of photosynthetic performance in mosses is a general response to thallus dessication. The decrease is caused by changes in photosystem II (PSII) functioning which is sensitively reflected in several chlorophyll fluorescence (ChlF) parameters. Apart from the decrease in potential yield of photosynthetic reactions in PSII (FV/FM), several protective mechanisms are activated during moss desiccation, non-photochemical quenching (NPQ) in particular. This is study focused on NPQ changes during the desiccation of Antarctic moss Sanionia uncinata. NPQ induction and relaxation curves were recorded during gradual dehydration from a fully wet state (relative water content [RWC] = 100%) to a fully dry state (RWC = 0%). Three key NPQ parameters were evaluated: NPQmax (maximum value), NPQtermin (at the end of induction) and NPQrelax (end of dark relaxation). The initial slope (a) and dark relaxation (b) of NPQ were analysed. Additionally, fast chlorophyll fluorescence transients (OJIPs) were measured and the parameters related to PSII functioning evaluated for decreasing RWC. The relationships between the ChlF parameters and RWC were investigated. Results indicated that NPQ induction and relaxation curves – along with the OJIP-derived parameters were sensitive to dehydration. Since critical RWC for all the investigated ChlF parameters were found below 20%, Sanionia uncinata might be ranked into drought-resistant moss species.


Keywords:
fast chlorophyll fluorescence transient; OJIP; non-photochemical quenching; NPQ induction/relaxation; James Ross Island; Antarctica
References

Bansal, P., Shrivastava, A. (2017): Desiccation-related responses of antioxidative enzymes and photosynthetic pigments in Brachythecium procumbens (Mitt.) A. Jaeger. Acta Physiologiae Plantarum, 39(7): 154. doi: 10.1007/s11738-017-2454-1

Bartošková, H., Komenda, J. and Nauš, J. (1999): Functional changes of photosystem II in the moss Rhizomnium punctatum (Hedw.) induced by different rates of dark desiccation. Journal of Plant Physiology, 154(5–6): 597-604. doi: 10.1016/S0176-1617(99)80232-6

Beckett, R. P., Mayaba, N., Minibayeva, F. V. and Alyabyev, A. J. (2005): Hardening by partial dehydration and ABA increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon. Annals of Botany, 96(1): 109-115. doi: 10.1093/aob/mci156

Beckett, R. P., Minibayeva, F. V. and Mkhize, K. W. G. (2021): Shade lichens are characterized by rapid relaxation of non-photochemical quenching on transition to darkness. Lichenologist, 53: 409-414.

Bhatt, U., Singh, H., Kumar, D. and Soni, V. (2019): Rehydration induces quick recovery of photosynthesis in desiccation tolerant moss Semibarbula orientalis. The Journal of Plant Science Research, 35(2): 183-187. doi: 10.32381/JPSR.2019.35.02.5

Bilger, W. (2014): Desiccation-induced quenching of chlorophyll fluorescence in cryptogams. In: B. Demmig-Adams, G. Garab, W. W. Adams III, Govindjee (eds.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Vol 40. Springer, Dordrecht, pp. 409–420.

Choi, H.-B., Lim, H. S., Young-Jun, Y., Ji-Hoon, K., Ok-Sun, K., Yoon, H. I. and Jong-Sik, R. (2022): Impact of anthropogenic inputs on Pb content of moss Sanionia uncinata (Hedw.) Loeske in King George Island, West Antarctica revealed by Pb isotopes. Geosciences Journal, 26(2): 225-234. doi: 10.1007/s12303-021-0032-4

Colesie, C., Walshaw, C. V., Leopoldo, G. S., Davey, M. P. and Gray, A. (2023): Antarctica's vegetation in a changing climate. Wiley Interdisciplinary Reviews - Climate Change, 14(1): e810. doi: 10.1002/wcc.810

Csintalan, Z., Proctor, M. C. F. and Tuba, Z. (1999): Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw). Annals of Botany, 84(2): 235-244.

de Vargas, M. V. M., Goulart, S. N. B., Andrade, G. A. K. D., Lemos, R. P. M., Albuquerque, M. P. D., Peixoto, L. F., Lourenço, A. L. P., de Oliveira, M. P. P., Dohms, S. M., Anjos, D. A. A. D., Ramada, M. H. S. and de Carvalho Victoria, F. (2024): Occurrence of Sanionia uncinata sporophytes on King George Island, Antarctica: Exploring possible links to climate change. Polar Science, 39: 101042. doi: 10.1016/j.polar.2023.101042

Giudici, G. N. M. (2021): Combined chlorophyll fluorescence techniques to study environmental impact on the mountain moss Polytrichum commune. Czech Polar Reports, 11(1): 161-173. doi: 10.5817/CPR2021-1-12

Giudici, G. N. M., Hájek, J., Barták, M. and Kubešová, S. (2018): Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central-European alpine habitats. Czech Polar Reports, 8(2): 286-298. doi: 10.5817/CPR2018-2-24

Hájek, J., Puhovkin, A., Lang, J., ul Haq, S. I., Bernatová, M., Giordano, D., Sekerák Jr., J. and Barták, M. (2025, under review): Drought stress-induced changes in PSII functioning in ecologi-cally contrasting plants evaluated by chlorophyll fluorescence: Comparative study of poikilohydric and homoiohydric species.

Hedenäs, L (2012): Global phylogeography in Sanionia uncinata (Amblystegiaceae: Bryophyta). Botanical Journal of the Linnean Society, 168(1): 19-42. doi: 10.1111/j.1095-8339.2011.01189.x

Ivanova, V., Kolarova, M., Aleksieva, K., Dornberger, K. J., Haertl, A., Moellmann, U., Dahse, H. M. and Chipev, N. (2007). Sanionins: Anti-inflammatory and antibacterial agents with weak cytotoxicity from the Antarctic moss Sanionia georgico-uncinata. Preparative Biochemistry & Biotechnology, 37(4): 343-352. doi: 10.1080/10826060701593241

Kolon, M., Kopeć, M., Wojtuń, B., Samecka-Cymerman, A., Mróz, L., Wąsowicz, P., Rajsz, A. and Kempers, A. J. (2020): Sanionia uncinata, Racomitrium lanuginosum and Salix herbacea as ecological indicators of metals in Iceland. Ecological Indicators, 112: 106058. doi: 10.1016/j.ecolind.2019.106058

Kress, E., Jahns, P. (2017): The dynamics of energy dissipation and xanthophyll conversion in Arabidopsis indicate an indirect photo-protective role of zeaxanthin in slowly inducible and relaxing components of non-photochemical quenching of excitation energy. Frontiers in Plant Science, 8: 2094.

Marečková, M., Barták, M. (2017): Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyll fluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum. Czech Polar Reports, 7: 74-82. doi: 10.5817/CPR2017-1-8

Mishra, A., Rosputinsky, M., Griesser, M. and Puhovkin, A. (2024): Photoprotective mechanisms activated in Antarctic moss Chorisodontium aciphyllum during desiccation. Czech Polar Reports, 14(1): 1-9. doi: 10.5817/CPR2024-1-1

Morales-Sánchez, J. Á. M., Mark, K., Souza, J. P. S. and Niinemets, Ü. (2022): Desiccation-rehydration measurements in bryophytes: Current status and future insights. Journal of Experimental Botany, 73(13): 4338-4361. doi: 10.1093/jxb/erac172

Müller, P., Li, X. P. and Niyogi, K. K. (2001): Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125(4): 1558-1566. doi: 10.1104/pp.125.4.1558

Murchie, E. H., Lawson, T. (2013): Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13): 3983-3998. doi: 10.1093/jxb/ert208

Nabe, H., Funabiki, R., Kashino, Y., Koike, H. and Satoh, K. (2007): Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states. Plant & Cell Physiology, 48(11): 1548-1557. doi: 10.1093/pcp/pcm124

Nakatsubo, T. (2002): Predicting the impact of climatic warming on the carbon balance of the moss Sanionia uncinata on a maritime Antarctic Island. Journal of Plant Research, 115(1118): 99-106. doi: 10.1007/s102650200014

Nayaka, S., Saxena, P. (2014): Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. Indian Journal of Fundamental and Applied Life Sciences, 4: 167-179.

Orekhova, A, Barták, M., Hájek, J. and Morkusová, J. (2022): Species-specific responses of spectral reflectance and the photosynthetic characteristics in two selected Antarctic mosses to thallus desiccation. Acta Physiologiae Plantarum, 44(1): 6. doi: 10.1007/s11738-021-03339-6

Orekhova, A., Barták, M., Casanova-Katny, A. and Hájek, J. (2021): Resistance of Antarctic moss Sanionia uncinata to photoinhibition: Chlorophyll fluorescence analysis of samples from the western and eastern coasts of the Antarctic Peninsula. Plant Biology (Stuttgart, Germany), 23(4): 653-663. doi: 10.1111/plb.13270

Orekhova, A., Hájek, J. (2022): Responses of primary photosynthetic processes to repetitive rehydration differ in two representatives of Svalbard moss flora. Czech Polar Reports, 12(1): 103-114. doi: 10.5817/CPR2022-1-8

Perera-Castro, A. V., Flexas, J. (2022): Desiccation tolerance in bryophytes relates to elasticity but is independent of cell wall thickness and photosynthesis. Physiologia Plantarum, 174(2): e13661. doi: 10.1111/ppl.13661

Perera-Castro, A. V., Flexas, J., González-Rodríguez, Á. M. and Fernández-Marín, B. (2021): Photosynthesis on the edge: Photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes. Photosynthesis Research, 149(1-2): 135-153. doi: 10.1007/s11120-020-00785-0

Perera-Castro, A. V., Waterman, M. J., Turnbull, J. D., Ashcroft, M. B., McKinley, E., Watling, J. R., Bramley-Alves, J., Casanova-Katny, A., Zuniga, G., Flexas, J. and Robinson, S. A. (2020): It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Frontiers in Plant Science, 11: 1178. doi: 10.3389/fpls.2020.01178

Permann, C., Pierangelini, M., Remias, D., Lewis, L.A. and Holzinger, A. (2022): Photophysiological investigations of the temperature stress responses of Zygnema spp. (Zygnematophyceae) from subpolar and polar habitats (Iceland, Svalbard). Phycologia, 61: 299-311.

Pizarro, M., Contreras, R. A., Köhler, H. and Zúñiga, G. E. (2019): Desiccation tolerance in the Antarctic moss Sanionia uncinata. Biological Research, 52(1): 46. doi: 10.1186/s40659-019-0251-6

Proctor, M. (2001): Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regulation, 35: 147-156. doi: 10.1023/A:1014429720821

Proctor, M. C. F. (2010): Recovery rates of chlorophyll-fluorescence parameters in desiccation-tolerant plants: Fitted logistic curves as a versatile and robust source of comparative data. Plant Growth Regulation, 62: 233-240. doi: 10.1007/s10725-010-9456-y

Ramakers, L. A. I., Harbinson, J., Wientjes, E. and van Amerongen, H. (2025): Unravelling the different components of nonphotochemical quenching using a novel analytical pipeline. The New Phytologist, 245(2): 625-636.

Ríos-Meléndez, S., Valadez-Hernández, E., Delgadillo, C., Luna-Guevara, M. L., Martínez-Núñez, M. A., Sánchez-Pérez, M., Martínez-Y-Pérez, J. L., Arroyo-Becerra, A., Cárdenas, L., Bibbins-Martínez, M., Maldonado-Mendoza, I. E. and Villalobos-López, M. A. (2021): Pseudocrossidium replicatum (Taylor) R.H. Zander is a fully desiccation-tolerant moss that expresses an inducible molecular mechanism in response to severe abiotic stress. Plant Molecular Biology, 107(4-5): 387-404. doi: 10.1007/s11103-021-01167-3

Robinson, S. A., Wasley, J., Popp, M. and Lovelock, C. E. (2000): Desiccation tolerance of three moss species from continental Antarctica. Functional Plant Biology, 27: 379-388.

Salih, H., Bai, W., Liang, Y., Yang, R., Zhao, M., Muhammd, S. M., Zhang, D. and Li, X. (2024): ROS scavenging enzyme-encoding genes play important roles in the desert moss Syntrichia caninervis response to extreme cold and desiccation stresses. International Journal of Biological Macromolecules, 254(Pt 2): 127778. doi: 10.1016/j.ijbiomac.2023.127778

Samecka-Cymerman, A., Wojtuń, B., Kolon, K. and Kempers, A. J. (2011): Sanionia uncinata (Hedw.) Loeske as bioindicator of metal pollution in polar regions. Polar Biology, 34: 381-388. doi: 10.1007/s00300-010-0893-x

Schlensog, M., Schroeter, B., Pannewitz, S. and Green, A. (2003): Adaptation of mosses and lichens to irradiance stress in maritime and continental Antarctic habitats. In: A. H. L. Huiskes, W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies, and W. J. Wolf (eds.): Antarctic biology in a global context. Backhuys Publishers, Leiden, NL, pp. 161–166.

Schreiber, U., Bilger, W. (1987): Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: J. D. Tenhunen, F. M. Catarino, O. L. Lange, and W. C. Oechel (eds.): Plant Response to Stress: Functional Analysis in Mediterranean Ecosystems. Springer-Verlag, Berlin, pp. 27–53. doi: 10.1007/978-3-642-70868-8_2

Schroeter, B., Green, T. G. A., Pintado, A., Türk, R. and Sancho, L. G. (2017): Summer activity patterns for mosses and lichens in Maritime Antarctica. Antarctic Science, 29(6): 517-530. doi: 10.1017/S095410201700027X

Schroeter, B., Green, T. G. A., Pintado, A., Türk, R. and Sancho, L. G. (2021): Summer activity patterns for a moss and lichen in the maritime Antarctic with respect to altitude. Polar Biology, 44: 2117-2137. doi: 10.1007/s00300-021-02939-9

Stachoň, Z., Russnák, J., Nývlt, D. and Hrbáček, F. (2014): Stabilisation of geodetic points in the surroundings of Johann Gregor Mendel Station, James Ross Island, Antarctica. Czech Polar Reports, 4(1): 80-89. doi: 10.5817/CPR2014-1-9

Strasser, R.J., Tsimilli-Michael, M. and Srivastava, A. (2004): Analysis of the chlorophyll a fluorescence transient. In: G. C. Papageorgiou, Govindjee (eds): Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, vol 19. Springer, Dordrecht. doi: 10.1007/978-1-4020-3218-9_12

Teodoro, A. L. S., Ramada, M. H. S., Paciencia, M. L. B., Dohms, S., Câmara, P. E. A. S., Varella, A. D., Frana, S. A., Silva, J. S. and Suffredini, I. B. (2024): Antarctic bryophyte Sanionia uncinata (Hedw.) Loeske, Amblystegiaceae, antimicrobial, antioxidant, cytotoxic, and acetylcholinesterase activities. Anais da Academia Brasileira de Ciencias, 96(suppl 2): e20240678. doi: 10.1590/0001-3765202420240678

Ueno, T., Bekku, Y., Uchida, M. and Kanda, H. (2006): Photosynthetic light responses of a widespread moss, Sanionia uncinata, from contrasting water regimes in the high Arctic tundra, Svalbard, Norway. Journal of Bryology, 28(4): 345-349. doi: 10.1179/174328206X152270

Ul Haq, S. I., Benita, M. B. and De Caralt, S. (2024): Photoinhibition and recovery of primary photosynthesis in Antarctic and subantarctic lichens. Analysis of interspecific differences. Czech Polar Reports, 14(1): 51-76. doi: 10.5817/cpr2024-1-4

Wierzgoń, M., Ivanets, V., Prekrasna-Kviatkovska, Y., Plášek, V. and Parnikoza, I. (2023): Moss bank composition on Galindez Island (Argentine Islands, maritime Antarctic). Polar Biology, 46: 1235-1249. doi: 10.1007/s00300-023-03197-7

Xue, S., Zang, Y., Chen, J., Shang, S., Gao, L. and Tang, X. (2022): Ultraviolet-B radiation stress triggers reactive oxygen species and regulates the antioxidant defense and photosynthesis systems of intertidal red algae Neoporphyra haitanensis. Frontiers in Marine Science, 9: 1043462. doi: 10.3389/fmars.2022.1043462

Yamakawa, H., Itoh, S. (2013): Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: Desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry, 52(26): 4451-4459. doi: 10.1021/bi4001886

Zhang, L., Yang, C. and Liu, C. (2023): Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase. Photosynthesis Research, 158(3): 171-180. doi: 10.1007/s11120-023-01044-8

Zhang, X., Zhao, Y. and Wang, S. (2017): Responses of antioxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. Acta Geochimica, 36(2): 205-212. doi: 10.1007/s11631-017-0140-z

Zúñiga-González, P., Zúñiga, G. E., Pizarro, M. and Casanova-Katny, A. (2016): Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities. Biological Research, 49: 6. doi: 10.1186/s40659-015-0058-z

Metrics

0

Crossref logo

0

web of science logo


0

Views

0

PDF views