Developing explainable AI models for predicting snowpack variability in Polar regions

Vol.15,No.1(2025)

Abstract

Accurate prediction of variability of polar snowpack is central to understanding global climate change and its impacts on ecosystems, sea-level rise, and weather patterns. Traditional, physically based snowpack models commonly fail to capture full range of complexity that realistic snow dynamics can display, especially under extreme climate events. On the contrary, machine learning (ML) models can enhance predictive accuracy but lack interpretability and thus are challenging to apply in scientific contexts. This research proposes construction of explainable AI models for prediction of polar snow-pack, emphasizing how to interpret domain knowledge coupled with state-of-the-art techniques in AI. Physics-informed neural networks are used herein to embed physical laws, Graph Neural Networks (GNNs) to represent spatial dependencies, and Recurent Neural Network (RNNs) for temporal sequences. Several post-hoc explanation techniques, such as SHAP and saliency maps, together with the development of causal inference models, are applied in such a way that the transparency and scientific basis of the models are preserved.


Keywords:
snowpack; variability; polar regions; explainable AI; neural networks; climate change
References

Arp, C. D., Jones, B. M., Engram, M., Alexeev, V. A., Cai, L., Parsekian, A., Hinkel, K., Bondurant, A. C. and Creighton, A. (2018): Contrasting lake ice responses to winter climate indicate future variability and trends on the Alaskan Arctic coastal plain. Environmental Research Letters, 13(12): 125001. doi: 10.1088/1748-9326/aae994

Blau, M. T., Turton, J. V., Sauter, T. and Molg, T. (2021): Surface mass balance and energy balance of the 79N Glacier (Nioghalvfjerdsfjorden, NE Greenland) modeled by linking COSIPY and Polar WRF. Journal of Glaciology, 67(266): 1093-1107. doi: 10.1017/jog.2021.56

Bonsoms, J., Oliva, M., Alonso-Gonzalez, E., Revuelto, J. and Lopez-Moreno, J. I. (2024): Impact of climate change on snowpack dynamics in coastal Central-Western Greenland. Science of the Total Environment, 913: 169616. doi: 10.1016/j.scitotenv.2023.169616

Celli, G., Cairns, W. R. L., Scarchilli, C., Cuevas, C. A., Saiz-Lopez, A., Savarino, J., Stenni, B., Frezzotti, M., Becagli, S., Delmonte, B., Angot, H., Fernandez, R. P. and Spolaor, A. (2023): Bromine, iodine and sodium along the EAIIST traverse: Bulk and surface snow latitudinal variability. Environmental Research, 239: 117344. doi: 10.1016/j.envres.2023.117344

Collow, A. B. M., Thomas, N. P., Bosilovich, M. G., Lim, Y.-K., Schubert, S. D. and Koster, R. D. (2022): Seasonal variability in the mechanisms behind the 2020 Siberian heatwaves. Journal of Climate, 35(10): 3075-3090. doi: 10.1175/jcli-d-21-0432.1

Davesne, G., Domine, F. and Fortier, D. (2022): Effects of meteorology and soil moisture on the spatio-temporal evolution of the depth hoar layer in the polar desert snowpack. Journal of Glaciology, 68(269): 457-472. doi: 10.1017/jog.2021.105

Docherty, C. L., Riis, T., Milner, A. M., Christofferson, K. S. and Hannah, D. M. (2018): Controls on stream hydrochemistry dynamics in a high Arctic snow-covered watershed. Hydrological Processes, 32(22): 3327-3340. doi: 10.1002/hyp.13256

Ebrahimi, S., Marshall, S. J. (2016): Surface energy balance sensitivity to meteorological variability on Haig Glacier, Canadian Rocky Mountains. Cryosphere, 10(6): 2799-2819. doi: 10.5194/tc-10-2799-2016

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H. and Wallenstein, M. D. (2014): Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10): 3256-3269. doi: 10.1111/gcb.12568

Homan, J. W., Kane, D. L. (2015): Arctic snow distribution patterns at the watershed scale. Hydrology Research, 46(4): 507-520. doi: 10.2166/nh.2014.024

Irannezhad, M., Ronkanen, A. K. and Klove, B. (2016): Wintertime climate factors controlling snow resource decline in Finland. International Journal of Climatology, 36(1): 110-131. doi: 10.1002/joc.4332

Jennings, K., Jones, J. A. (2015): Precipitation-snowmelt timing and snowmelt augmentation of large peak flow events, western Cascades, Oregon. Water Resources Research, 51(9): 7649-7661. doi: 10.1002/2014wr016877

Li, F., Orsolini, Y. J., Wang, H., Gao, Y. and He, S. (2018): Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline. Geophysical Research Letters, 45(5): 2497-2506. doi: 10.1002/2017gl076210

Li, J., Li, F. and Wang, H. (2020): Subseasonal prediction of winter precipitation in southern China using the early November snowpack over the Urals. Atmospheric and Oceanic Science Letters, 13(6): 534-541. doi: 10.1080/16742834.2020.1824547

Owczarek, P., Opala, M. (2016): Dendrochronology and extreme pointer years in the tree-ring record (ad 1951-2011) of Polar willow from Southwestern Spitsbergen (Svalbard, Norway). Geochronometria, 43(1): 84-95. doi: 10.1515/geochr-2015-0035

Pletzer, T., Conway, J. P., Cullen, N. J., Eidhammer, T. and Katurji, M. (2024): The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier. Hydrology and Earth System Sciences, 28(3): 459-478. doi: 10.5194/hess-28-459-2024

Roy, A., Leduc-Leballeur, M., Picard, G., Royer, A., Toose, P., Derksen, C., Lemmetyinen, J., Berg, A., Rowlandson, T. and Schwank, M. (2018): Modelling the L-Band Snow-Covered surface emission in a winter Canadian prairie environment. Remote Sensing, 10(9): 1451. doi: 10.3390/rs10091451

Ru, Y., Ren, X. (2024): Subseasonal variability of sea level pressure and its influence on snowpack over mid-high-latitude Eurasia during boreal winter. Climate Dynamics, 62(8): 8299-8318. doi: 10.1007/s00382-024-07345-5

Singh, S. K., Thakur, P., Tripathi, N., Joshi, P., Garg, V., Dubey, A., Ghetiya, S., Srigyan, M., Das, J., Jayaprasad, P., Shukla, A. and Oza, S. R. (2024): Harnessing the potential of EOS-04 SAR data for Himalayan and polar cryospheric studies. Current Science, 126(9): 1077-1087. doi: 10.18520/cs/v126/i9/1077-1087

Sobota, I., Weckwerth, P. and Grajewski, T. (2020): Rain-On-Snow (ROS) events and their relations to snowpack and ice layer changes on small glaciers in Svalbard, the high Arctic. Journal of Hydrology, 590: 125279. doi: 10.1016/j.jhydrol.2020.125279

Spolaor, A., Angot, H., Roman, M., Dommergue, A., Scarchilli, C., Varde, M., Del Guasta, M., Pedeli, X., Varin, C., Sprovieri, F., Magand, O., Legrand, M., Barbante, C. and Cairns, W. R. L. (2018): Feedback mechanisms between snow and atmospheric mercury: Results and observations from field campaigns on the Antarctic plateau. Chemosphere, 197: 306-317. doi: 10.1016/j.chemosphere.2017.12.180

Spolaor, A., Burgay, F., Fernandez, R. P., Turetta, C., Cuevas, C. A., Kim, K., Kinnison, D. E., Lamarque, J.-F., de Blasi, F., Barbaro, E., Corella, J. P., Vallelonga, P., Frezzotti, M., Barbante, C. and Saiz-Lopez, A. (2021): Antarctic ozone hole modifies iodine geochemistry on the Antarctic Plateau. Nature Communications, 12(1): 5836. doi: 10.1038/s41467-021-26109-x

Spolaor, A., Vallelonga, P., Gabrieli, J., Martma, T., Bjorkman, M. P., Isaksson, E., Cozzi, G., Turetta, C., Kjaer, H. A., Curran, M. A. J., Moy, A. D., Schoenhardt, A., Blechschmidt, A. M., Burrows, J. P., Plane, J. M. C. and Barbante, C. (2014): Seasonality of halogen deposition in polar snow and ice. Atmospheric Chemistry and Physics, 14(18): 9613-9622. doi: 10.5194/acp-14-9613-2014

Stroeve, J. C., Veyssiere, G., Nab, C., Light, B., Perovich, D., Laliberte, J., Campbell, K., Landy, J., Mallett, R., Barrett, A., Liston, G. E., Haddon, A. and Wilkinson, J. (2024): Mapping potential timing of ice algal blooms from satellite. Geophysical Research Letters, 51(8): e2023GL106486. doi: 10.1029/2023gl106486

Thapa, K. K., Singh, B., Savalkar, S., Fern, A., Rajagopalan, K. and Kalyanaraman, A. (2024): Attention-based models for snow-water equivalent prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 38(21): 22969-22975. doi: 10.1609/aaai.v38i21.30337

Valt, M., Salvatori, R. (2016): Snowpack characteristics of Broggerhalvoya, Svalbard Islands. Rendiconti Lincei-Scienze Fisiche E Naturali, 27: 129-136. doi: 10.1007/s12210-016-0509-7

van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y. and Tregoning, P. (2014): A global water cycle reanalysis (2003-2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrology and Earth System Sciences, 18(8): 2955-2973. doi: 10.5194/hess-18-2955-2014

Varty, S., Lehnherr, I., St Pierre, K., Kirk, J. and Wisniewski, V. (2021): Methylmercury transport and fate shows strong seasonal and spatial variability along a High Arctic freshwater hydrologic continuum. Environmental Science & Technology, 55(1): 331-340. doi: 10.1021/acs.est.0c05051

Wahl, S., Walter, B., Aemisegger, F., Bianchi, L. and Lehning, M. (2024): Identifying airborne snow metamorphism with stable water isotopes. Cryosphere, 18(9): 4493-4515. doi: 10.5194/tc-18-4493-2024

Weinhart, A. H., Kipfstuhl, S., Hoerhold, M., Eisen, O. and Freitag, J. (2021): Spatial distribution of crusts in Antarctic and Greenland snowpacks and implications for snow and firn studies. Frontiers in Earth Science, 9: 630070. doi: 10.3389/feart.2021.630070

Metrics

0

Crossref logo

0

web of science logo


0

Views

0

PDF views