Scene-to-Scene classification variability in spatiotemporal glacier surface facies mapping in Svalbard

Vol.15,No.1(2025)

Abstract

Spatiotemporal analysis of glaciological phenomena provides a robust assessment of a glacier’s health. Glacier surface facies (GSF) are direct indicators of the state of snow and ice within a glacier. However, long-term analyses of GSF via optical satellite products presents challenges stemming from data availability, weather conditions, and variations in mapping methodologies. In this study we present the first decadal analysis of GSF in Svalbard using optical satellite data. Utilizing unsupervised classification on images of the Vestre Broggerbreen glacier from 2013 to 2023, we identify and quantify the variations between facies observed on the images and their classified spatial distributions. The identified facies comprise of snow, firn, glacier ice, and dirty ice, with a fifth thematic class of shadowed snow. In certain imagery, snow and firn are labelled as ‘snow 1’ and ‘snow 2’ due to the derived reflectance and appearance of firn differing from established patterns in the literature, while remaining spectrally distinct from snow. Our analysis suggests that shadowed snow induces the most misclassification in overall assessment of GSF. Shadowed snow and dirty ice produce convoluted spectral reflectance that in combination with the overall darkening of the glacier severely misrepresented firn, underreported dirty ice, and produced inaccurate maps. Spatially, dirty ice was classified with a lower distribution in 2023 (0.49 km2) than in 2013 (0.58 km2). Moreover, firn/snow 2 was classified as a larger area in 2023 (1.01 km2). These results indicate a pressing need to identify long-term trends affected by scene-to-scene distortions. Our future experiments involve multi-decadal supervised analyses of GSF in the high Arctic involving image-specific discussions, thereby providing crucial information for refinement of supraglacial monitoring with multispectral data. 


Keywords:
spatiotemporal analysis; ISODATA classification; glacier dynamics; image distortions; Svalbard; glacier facies
References

Ali, I., Shukla, A. and Romshoo, S. A. (2017): Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. Geomorphology, 284: 115-129. doi: 10.1016/j.geomorph.2017.01.005

Benson, C. S. (1959): Physical investigations on the snow and firn of northwest Greenland 1952, 1953, and 1954. US Army Snow Ice and Permafrost Research Establishment. Corps of Engineers, 26.

Braun, M., Schuler, T., Hock, R., Brown, I. and Jackson, M. (2007): Comparison of remote sensing derived glacier facies maps with distributed mass balance modelling at Engabreen, northern Norway. IAHS-AISH Publication [Preprint].

Cisek, M., Makuch, P. and Petelski, T. (2017): Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia, 59(4): 413-421. doi: 10.1016/j.oceano.2017.06.004

Engeset, R. V., Kohler, J., Melvold, K. and Lundén, B. (2002): Change detection and monitoring of glacier mass balance and facies using ERS SAR winter images over Svalbard. International Journal of Remote Sensing, 23(10): 2023-2050. doi: 10.1080/01431160110075550

Florath, J., Keller, S., Abarca-Del-rio, R., Hinz, S., Staub, G. and Weinmann, M. (2022): Glacier monitoring based on multi-spectral and multi-temporal satellite data: A case study for classification with respect to different snow and ice types. Remote Sensing, 14(4). doi: 10.3390/rs14040845

García-Rubio, G., Huntley, D. and Russell, P. (2015): Evaluating shoreline identification using optical satellite images. Marine Geology, 359: 96-105. doi: 10.1016/j.margeo.2014.11.002

Garg, V., Thakur, P. K., Rajak, D. R., Aggarwal, S. P. and Kumar, P. (2022): Spatio-temporal changes in radar zones and ELA estimation of glaciers in NyÅlesund using Sentinel-1 SAR. Polar Science, 31: 100786. doi: 10.1016/j.polar.2021.100786

Geetha Priya, M., Krishna, V., Lohit, S. and Devaraj, S. (2022): Detecting short-term surface melt over Vestre Broggerbreen, Arctic glacier using indigenously developed unmanned air vehicles. Geocarto International, 37(11): 3167-3178. doi: 10.1080/10106049.2020.1849416

Greuell, W., Oerlemans, J. (2005): Validation of AVHRR- and MODIS-derived albedos of snow and ice surfaces by means of helicopter measurements. Journal of Glaciology, 51(172): 37-48. doi: 10.3189/172756505781829575

Haq, M.A., Alshehri, M., Rahaman, G., Ghosh, A., Baral, P. and Shekhar, C. (2021): Snow and glacial feature identification using Hyperion dataset and machine learning algorithms. Arabian Journal of Geosciences, 14(15). doi: 10.1007/s12517-021-07434-3

Isaksen, K., Nordli, Ø., Førland, E.J., Łupikasza, E., Eastwood, S. and Niedźwiedź, T. (2016): Recent warming on Spitsbergen – Influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research: Atmospheres, 121(20): 11,913-11,931. doi: 10.1002/2016JD025606

Jawak, S. D., Devliyal, P. and Luis, A. J. (2015): A comprehensive review on pixel oriented and object oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications. Advances in Remote Sensing, 04(03): 177-195. doi: 10.4236/ars.2015.43015

Jawak, S. D., Wankhede, S. F. and Luis, A. J. (2019): Explorative study on mapping surface facies of selected glaciers from chandra basin, Himalaya Using WorldView-2 Data. Remote Sensing, 11(10). doi: 10.3390/rs11101207

Jawak, S. D., Wankhede, S. F., Luis, A. J. and Balakrishna, K. (2022a): Effect of image-processing routines on geographic object-based image analysis for mapping glacier surface facies from Svalbard and the Himalayas. Remote Sensing, 14(17). doi: 10.3390/rs14174403

Jawak, S. D., Wankhede, S. F., Luis, A. J. and Balakrishna, K. (2022b): Impact of image-processing routines on mapping glacier surface facies from Svalbard and the Himalayas using pixel-based methods. Remote Sensing, 14(6). doi: 10.3390/rs14061414

Jawak, S. D., Wankhede, S. F., Luis, A. J. and Balakrishna, K. (2022c): Multispectral characteristics of glacier surface facies (Chandra-Bhaga Basin, Himalaya, and Ny-Ålesund, Svalbard) through investigations of pixel and object-based mapping using variable processing routines. Remote Sensing, 14(24). doi: 10.3390/rs14246311

Jawak, S. D., Wankhede, S. F., Luis, A. J. and Balakrishna, K. (2022d): High-resolution remote sensing for mapping Glacier Facies in the Arctic. In: M. Pandey, P. C. Pandey, Y. Ray, A. Arora, S. D. Jawak, U. K. Shukla (eds): Advances in Remote Sensing Technology and the Three Poles. doi: 10.1002/9781119787754.ch26

Jawak, S. D., Wankhede, S. F., Pandit, P. H. and Balakrishna, K. (2023): Spatiotemporal variations of Glacier Surface Facies (GSF) in Svalbard: An example of Midtre Lovénbreen. Environmental Sciences Proceedings, 29(1): 22. doi: 10.3390/ECRS2023-15840

Kar, R., Mazumder, A., Mishra, K., Patil, S. K., Ravindra, R., Ranhotra, P. S., Govil, P., Bajpai, R. and Singh, K. (2018): Climatic history of Ny-Alesund region, Svalbard, over the last 19,000 yr: Insights from quartz grain microtexture and magnetic susceptibility. Polar Science, 18: 189-196. doi: 10.1016/j.polar.2018.04.004

Kaštovská, K., Elster, J., Stibal, M. and Šantrůčková, H. (2005): Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology, 50(3): 396-407. doi: 10.1007/s00248-005-0246-4

Kaushik, S., Singh, T., Bhardwaj, A., Joshi, P. K. and Dietz, A. J. (2022): Automated delineation of supraglacial debris cover using deep learning and multisource remote sensing data. Remote Sensing, 14(6): 1352. doi: 10.3390/rs14061352

Kohler, J., James, T. D., Murray, T., Nuth, C., Brandt, O., Barrand, N. E., Aas, H. F. and Luckman, A. (2007): Acceleration in thinning rate on western Svalbard glaciers. Geophysical Research Letters, 34(18). doi: 10.1029/2007GL030681

Lapointe, F., Karmalkar, A. V., Bradley, R. S., Retelle, M. J. and Wang, F. (2024): Climate extremes in Svalbard over the last two millennia are linked to atmospheric blocking. Nature Communications, 15(1). doi: 10.1038/s41467-024-48603-8

Luckman, A., Jansen, D., Kulessa, B., King, E. C., Sammonds, P. and Benn, D. I. (2012): Basal crevasses in Larsen C Ice Shelf and implications for their global abundance. The Cryosphere, 6(1): 113-123. doi: 10.5194/tc-6-113-2012

Luis, A.J., Singh, S. (2020): High-resolution multispectral mapping facies on glacier surface in the Arctic using WorldView-3 data. Czech Polar Reports, 10(1): 23-36. doi: 10.5817/CPR2020-1-3

Ouchra, H., Belangour, A. (2021): Satellite image classification methods and techniques: A survey’, in IST 2021 IEEE International Conference on Imaging Systems and Techniques, Proceedings. Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/IST50367.2021.9651454

Patel, L., Sharma, P. and Thamban, M. (2019): Spatio-temporal variability of snow water equivalent over the Vestre Broggerbreen and Feiringbreen glaciers, Ny-Ålesund, Svalbard. Journal of Earth System Science, 128(7). doi: 10.1007/s12040-019-1224-4

Pope, A., Willis, I. C., Rees, W. G., Arnold, N. S. and Pálsson, F. (2013): Combining airborne lidar and Landsat ETM+ data with photoclinometry to produce a digital elevation model for Langjökull, Iceland. International Journal of Remote Sensing, 34(4): 1005-1025. doi: 10.1080/01431161. 2012.705446

Pope, A., Rees, G. (2014a): Using in situ spectra to explore landsat classification of glacier surfaces: International Journal of Applied Earth Observation and Geoinformation, 27(Part A): 42-52. doi: 10.1016/j.jag.2013.08.007

Pope, A., Rees, W. G. (2014b): Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sensing of Environment, 141: 1-13. doi: 10.1016/j.rse.2013.08.028

Porter, C., Howat, I., Noh, M. J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P. (2022): “ArcticDEM – Strips, Version 4.1”. Harvard Dataverse, V1, [Accessed on: 21 January 2019]. doi: 10.7910/DVN/3VDC4W

Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S. and Egorov, A. (2016): Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185: 57-70. doi: 10.1016/j.rse.2015.12.024.

Sadiq, M., Dutta, S., Kumar, P., Jat, S., Gajbhiye, D. Y. and Dharwadkar, A. (2022): Ice dynamics of Vestre Brøggerbreen glaciers, Ny-Ålesund, Svalbard, Arctic. Journal of Earth System Science, 131(1). doi: 10.1007/s12040-021-01750-8

Seier, G., Abermann, J., Wecht, M., Neureiter, A., Sulzer, W. and Kellerer-Pirklbauer, A. (2024): Thinning and dynamics of the glacier terminus at the Pasterze Glacier (Austria), 2016–2021. Cold Regions Science and Technology, 222: 104198. doi: 10.1016/j.coldregions.2024.104198

Serreze, M. C., Barry, R. G. (2011): Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77(1–2): 85-96. doi: 10.1016/j.gloplacha.2011.03.004

Singh, P., Roy, U. and Tsuji, M. (2016): Characterisation of yeast and filamentous fungi from Brøggerbreen glaciers, Svalbard. Polar Record, 52(4): 442-449. doi: 10.1017/S0032247416000085

Wankhede, S. F., Pandit, P. H., Jawak, S. D., Luis, A. J. and Balakrishna, K. (2023): Modulating spectral reflectance and its impact on thematic mapping: An analysis on glacier facies using very high-resolution satellite imagery. In: SPIE-Intl Soc Optical Eng, 61 p. doi: 10.1117/12.2680310

Wickström, S., Jonassen, M. O., Cassano, J. J. and Vihma, T. (2020): Present temperature, precipitation, and rain-on-snow climate in Svalbard. Journal of Geophysical Research: Atmospheres, 125(14). doi: 10.1029/2019JD032155

Williams, R. S., Hall, D. K. and Benson, C. S. (1991): Analysis of glacier facies using satellite techniques. Journal of Glaciology, 37(125): 120-128. doi: 10.3189/s0022143000042878

Yousuf, B., Shukla, A., Ali, I., Garg, P. K. and Garg, S. (2024): Surface facies analysis of the Gangotri and neighbouring glaciers, central Himalaya. Science of Remote Sensing, 9: 100128. doi: 10.1016/j.srs.2024.100128

Yousuf, B., Shukla, A., Arora, M. K. and Jasrotia, A. S. (2019): Glacier facies characterization using optical satellite data: Impacts of radiometric resolution, seasonality, and surface morphology. Progress in Physical Geography, 43(4): 473-495. doi: 10.1177/0309133319840770

Metrics

0

Crossref logo

0

web of science logo


0

Views

0

PDF views