Chemical analysis of Antarctic regolith and lunar regolith simulant as prospective substrates for experiments with plants

Vol.14,No.2(2024)

Abstract

This study investigates the viability of Antarctic regolith and a lunar regolith simulant as prospective substrates for plant growth under extreme conditions. The study is focused on chemical composition of both substrates with a special respect to heavy metals. The Antarctic regolith samples were collected from James Ross Island, while lunar regolith simulant was developed in order to access the mobility and bioavailability of trace metals in these substrates, using a modified BCR (Community Bureau of Reference) sequential extraction procedure. Cadmium (Cd) and zinc (Zn) are among the significant mobile fractions, indicating their possible effects on the germination and growth of plants. Additionally, preliminary results from the study of the regolith samples at the area of Berry Hill mesa are presented, as well as the chemical and mineralogical affinity of the Antarctic regolith and the produced lunar simulant to lunar regolith. The findings suggest that such Antarctic environment can be used in astrobiological studies and future lunar habitation efforts to sustainably cultivate plants and perform other biological experiments on these extraterrestrial surfaces. This is an important concept in light of active programs like Artemis and Gateway.


Keywords:
lunar regolith simulant; heavy metal; BCR extraction; Antarctica; James Ross Island; ISRU; agriculture
References

Altunkaynak, S., Aldanmaz, E., Güraslan, I., Caliskanoglu, A. Z., Ünal, A. and Nývlt, D. (2018): Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results. Czech Polar Reports, 8: 60-83. doi: 10.5817/CPR2018-1-5

Arain, M. B., Kazi, T. G., Jamali, M. K., Afridi, H. I., Jalbani, N., Sarfraz, R. A., Baig, J. A., Kandhro, G. A. and Memon, M. A. (2008): Time-saving modified BCR sequential extraction procedure for the fraction of Cd, Cr, Cu, Ni, Pb and Zn in sediment samples of a polluted lake. Journal of Hazardous Materials, 160(2–3), 235-239. doi: 10.1016/j.jhazmat.2008.02.108

Argyrou, D., Stavrakakis, H.-A. and Chatzitheodoridis, E. (2024): Synthesizing Mars: Advancements in simulant lithology for astrobiological and ISRU studies. EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-12957. doi: 10.5194/egusphere-egu24-12957

Duncan, A. R., Sher, M. K., Abraham, Y. C., Erlank, A. J., Willis, J. P. and Ahrens, L. (1975): Interpretation of compositional variability of Apollo 15 soils. Proceedings 6th Lunar Science Conference, pp. 2309–2320.

Duri, L. G., Caporale, A. G., Rouphael, Y., Vingiani, S., Palladino, M., De Pascale, S. and Adamo, P. (2022): The potential for lunar and Martian regolith simulants to sustain plant growth: A multidisciplinary overview. Frontiers in Astronomy and Space Sciences, 8: 747821. doi: 10.3389/fspas.2022.747821

Eichler, A., Hadland, N., Pickett, D. E., Masaitis, D., Handy, D. C., Perez, A., Batcheldor, D., Wheeler, B. A. and Palmer, A. G. (2021): Challenging the agricultural viability of Martian regolith simulants. Icarus, 354: 114022. doi: 10.1016/j.icarus.2020.114022

Fackrell, L. E., Schroeder, P. A., Thompson, A., Stockstill-Cahill, K. and Hibbitts, C. A. (2021): Development of Martian regolith and bedrock simulants: Potential and limitations of Martian regolith as an in-situ resource. Icarus, 354: 114055. doi: 10.1016/j.icarus.2021.114055

Chatzitheodoridis, E., Georgiou, C. D., Ferus, M., Kalaitzopoulou, E., Stavrakakis, H.-A., Markopoulos, I. and Holynska, M. (2024): Sensing technologies for the challenging lunar environment. Advances in Space Research, 74(7): 3407-3436. doi: 10.1016/j.asr.2024.07.017

Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W. and Stingeder, G. J. (2004): Determination of trace elements bound to soils and sediment fractions (IUPAC Technical Report). Pure and Applied Chemistry, 76(2): 415-442. doi: 10.1351/pac200476020415

Hossner, L. R., Ming, D. W., Henninger, D. L. and Allen, E. R. (1991): Lunar outpost agriculture. Endeavour, 15(2): 79-85. doi: 10.1016/S0160-9327(05)80009-2

Košler, J., Magna, T., Mlčoch, B., Mixa, P., Nývlt, D. and Holub, F. V. (2009): Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology, 258(3–4): 207-218. doi: 10.1016/j.chemgeo.2008.10.018

Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B. and Bateman, P. (Eds.) (2002): Igneous rocks: A classification and glossary of terms: Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge (2nd ed.), 256 p.

Kubová, J., Streško, V., Bujdoš, B., Matúš, P. and Medveď, J. (2004): Fractionation of various elements in CRMs and in polluted soils. Analytical and Bioanalytical Chemistry, 379(1): 108-114. doi: 10.1007/s00216-004-2612-4

Ming, D. W., Henninger, D. L. (1994): Use of lunar regolith as a substrate for plant growth. Advances in Space Research, 14(11): 435-443. doi: 10.1016/0273-1177(94)90333-6

Mlčoch, B., Nývlt, D. (2013): Vulkanismus a zalednění prostoru ostrova Jamese Rosse. In: P. Prošek (ed.): Antarktida. Academia Press, pp. 253–264.

Mlčoch, B., Nývlt, D. and Mixa, P. (Eds.) (2018): Geological map of James Ross Island – Northern part 1:25,000. Czech Geological Survey, Prague, Czech Republic.

Mortley, D. G., Aglan, H., Bonsi, C. K. and Hill, W. A. (2000): Growth of sweetpotato in lunar and Mars simulants. SAE Technical Paper, 2000-01-2289. doi: 10.4271/2000-01-2289

Narendranath, S., Pillai, N.S., Tadepalli, S. P., Sarantos, M., Vadodariya, K., Sarwade, A., Radhakrishna V, and Tyagi, A. (2022): Sodium distribution on the Moon. The Astrophysical Journal Letters, 937(2): L23. doi: 10.3847/2041-8213/ac8d7f

Paul, A.-L., Elardo, S. M. and Ferl, R. (2022): Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Communications Biology, 5(1): 382. doi: 10.1038/s42003-022-03372-4

Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntaub, H. and Quevauvilleri, Ph. (2000): Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483). Journal of Environmental Monitoring, 2(3): 228-233. doi: 10.1039/B001496F

Schrader, C., Rickman, D., McLemore, C., Fikes, J., Stoeser, D., Wentworth, S. and McKay, D. (2009): Lunar regolith characterization for simulant design and evaluation using figure of merit algorithms. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 755 p.

Smellie, J. L., Johnson, J. S., McIntosh, W. C., Esser, R., Gudmundsson, M. T., Hambrey, M. J. and van Wyk de Vries, B. (2008): Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(1–2): 122-148. doi: 10.1016/j.palaeo.2007.08.020

Smellie, J. L., Johnson, J. S. and Nelson, A. E. (2013): Geological map of James Ross Island. I. James Ross Island Volcanic Group (1:125,000 Scale). BAS GEOMAP 2 Series, Sheet 5, British Antarctic Survey, Cambridge.

Smellie, J. L., McArthur, J. M., McIntosh, W. C. and Esser, R. (2006): Late Neogene interglacial events in the James Ross Island region, Northern Antarctic Peninsula, dated by Ar/Ar and Sr−isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 242(1–2): 169-187. doi: 10.1016/j.palaeo.2006.05.020

Stavrakakis, H.-A., Argyrou, D. and Chatzitheodoridis, E. (2022): Introducing the first Greek Martian and Lunar Simulants. Europlanet Science Congress 2022, Granada, Spain, 18–23 September 2022, EPSC2022-611. doi: 10.5194/epsc2022-611

Steenstra, E. S., Agmon, N., Berndt, J., Klemme, S., Matveev, S. and van Westrenen, W. (2018): Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation. Scientific Reports, 8: 7053. doi: 10.1038/s41598-018-25505-6

Ure, A. M., Quevauviller, Ph., Muntau, H. and Griepink, B. (1993): Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1–4): 135-151. doi: 10.1080/03067319308027619

Metrics

10

Views

9

PDF views