Multi-source method for analysing ice cover phenology of high-altitude (High Tatra Mts.) lakes
Vol.14,No.2(2024)
This paper presents a multi-source analysis for studying lake ice cover phenology in the high mountain environment. For the study, two lakes located in the High Tatra Mts. (southern side belonging to Slovakia), were selected. The combination of optical satellite imagery (Sentinel-2) and webcam images from meteorological stations (Avalanche Prevention Centre, MRS of the SR) with a direct view of these lakes was used. Such approach compensates for the technological limitations of separate methods and the limitations of this specific environment. It allowed for the first time to determine in detail the individual phenological phases of freezing, thawing/breaking and duration of lake ice cover on the Slovak side of this mountain range. The method might be generally applicable in high-altitude lakes which are difficult to access, small in size, and located in an area of high cloud cover, but represent a significant part of the high mountain cryosphere.
lake ice phenomena; high mountain conditions; optical satellite images; Sentinel-2; webcam images
Adler, C., Wester, P., Bhatt, I., Huggel, C., Insarov, G. E., Morecroft, M. D., Muccione, V. and Prakash, A. (2022): Cross-Chapter Paper 5: Mountains. In: H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem and B. Rama (eds.): Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 2273–2318. doi: 10.1017/9781009325844.022.
Adrian, R., O'reilly, C. M., Zagarese, H., Baines, S.B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A. and Winder, M. (2009): Lakes as sentinels of climate change. Limnology and Oceanography, 54(6): 2283-2297. doi: 10.4319/lo.2009.54.6_part_2.2283
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G., Korhonen, J., Livingstone, D. M., Stewart K. M., Weyhenmeyer, G. A. and Granin, N. G. (2012): Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Climatic Change, 112(2): 299-323. doi: 10.1007/s10584-011-0212-8
Bohuš, I. ml. (2007): Tatranské chaty – Majáky v mori skál a snehu. I & B, Ivan Bohuš: Tatranská Lomnica, 141 p.
Brown, L. C., Duguay, C. R. (2010): The response and role of ice cover in lake-climate interactions. Progress in Physical Geography: Earth and Environment, 34(5): 671-704. doi: 10.1177/0309133310375653
Cai, Y., Ke, Cq., Yao, G. and Shen, X. (2020): MODIS-observed variations of lake ice phenology in Xinjiang, China. Climatic Change, 158(3): 575-592. doi: 10.1007/s10584-019-02623-2
Caldwell, T. J., Chandra, S., Feher, K., Simmons, J. B. and Hogan, Z. (2020): Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use. Global Change Biology, 26(10): 5475-5491. doi: 10.1111/gcb.15258
Choiński, A. (2016): Ice phenomena on Lake Czarny Staw pod Rysami. Limnological Review, 16(3): 165-169. doi: 10.1515/limre-2016-0018
Choiński, A. (2017): Ice phenomena on Lake Wielki Staw in the Valley of Five Polish Lakes. Limnological Review, 17(2): 71-77. doi: 10.1515/limre-2017-0007
Choiński, A., Ptak, M. and Strzelczak, A. (2013): Areal variation in ice cover thickness on Lake Morskie Oko (Tatra Mountains). Carpathian Journal of Earth and Environmental Sciences, 8(3): 97-102.
Cooley, S. W., Smith, L. C., Ryan, J. C., Pitcher, L. H. and Pavelsky, T. M. (2019): Arctic-boreal lake dynamics revealed using cubesat imagery. Geophysical Research Letters, 46(4): 2111-2120. doi: 10.1029/2018GL081584
Cooley, S. W., Smith, L. C., Stepan, L. and Mascaro, J. (2017): Tracking dynamic northern surface water changes with high-frequency planet cubesat imagery. Remote Sensing, 9(12): 1306. doi: 10.3390/rs9121306
Du, J., Kimball, J. S., Duguay, C., Kim, Y. and Watts, J. D. (2017): Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11(1): 47-63. doi: 10.5194/tc-11-47-2017
Duguay, C. R., Bernier, M., Gauthier, Y. and Kouraev, A. (2015): Remote sensing of the cryosphere. In: M. Tedesco (ed.): Remote sensing of lake and river ice. John Wiley & Sons, Ltd., pp. 273–306.
Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard, P., Morris, K. and Rouse, W. R. (2003): Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations. Hydrological Processes, 17(17): 3465-3483. doi: 10.1002/hyp.1394
Gądek, B., Szumny, M. and Szypuła, B. (2020): Classification of the Tatra Mountain lakes in terms of the duration of their ice cover (Poland and Slovakia). Journal of Limnology, 79(1): 70-81. doi: 10.4081/jlimnol.2019.1920
Gafurov, A., Bárdossy, A. (2009): Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Science, 13(7): 1361-1373. doi: 10.5194/hess-13-1361-2009
Gao, Y., Xie, H. J., Yao, T. D. and Xue, C. S. (2010): Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sensing Environment, 114(8): 1662-1675.
Geldsetzer, T., Sanden, J. V. D. and Brisco, B. (2010): Monitoring lake ice during spring melt using RADARSAT-2 SAR. Canadian Journal of Remote Sensing, 36(S2): 391-400. doi: 10.5589/M11-001
Gregor, V., Pacl, J. (2005): Hydrológia Tatranských jazier. Acta Hydrologica Slovaca, 6(1): 161-187.
Hampton, S. E., Galloway, A. W. E., Powers, S. M., Ozersky, T., Woo, K. H. et al. (2017): Ecology under lake ice. Ecology Letters, 20: 98-111. doi: 10.1111/ele.12699
Heinilä, K., Mattila, O. P., Metsämäki, S., Väkevä, S., Luojus, K., Schwaizer, G. and Koponen, S. (2021): A novel method for detecting lake ice cover using optical satellite data. International Journal of Applied Earth Observation and Geoinformation, 104: 102566. doi: 10.1016/j.jag.2021.102566
Hendricks, F. H-J., Scherrer, S. C. (2008): Freezing of lakes on the Swiss Plateau in the period 1901–2006. International Journal of Climatology, 28(4): 421-433. doi: 10.1002/joc.1553
Hreško, J., Petrovič, F., Sedláková, H., Rybanský, Ľ. and Sedlák, A. (2013): Recent development of the alpine lakes in Slovak part of the High Tatras Mts. Životné prostredie, 47(3): 140-143.
Huo, P., Lu, P., Cheng, B., Zhang, L., Wang, Q. and Li, Z. (2022): Monitoring ice phenology in Lake Wetlands based on optical satellite data: A case study of Wuliangsu Lake. Water, 14(20): 3307. doi: 10.3390/w14203307
Kapusta, J., Hreško, J., Petrovič, F., Tomko–Králo, D. and Gallik, J. (2018): Water surface overgrowing of the Tatra's lakes. Ekológia (Bratislava), 37(1): 11-23. doi: 10.2478/eko-2018-0002
Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J. J., Straile, D. and Weyhenmeyer, G. A. (2019): Consequences of lake and river ice loss on cultural ecosystem services. Limnology and Oceanography Letters, 4(5): 119-131. doi: 10.1002/lol2.10116
Kropáček, J., Maussion, F., Chen, F., Hoerz, S. and Hochschild, V. (2013): Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. The Cryosphere, 7(1): 287-301. doi: 10.5194/tc-7-287-2013
L’abée-Lund, J. H., Vøllestad, L. A., Brittain, J. E., Kvambekk, Å. S. and Solvang, T. (2021): Geographic variation and temporal trends in ice phenology in Norwegian lakes during the period 1890–2020. The Cryosphere, 15(5): 2333-2356. doi: 10.5194/tc-2020-374
Latifovic, R., Pouliot, D. (2007): Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sensing of Environment, 106(4): 492-507. doi: 10.1016/j.rse.2006.09.015
Li, X., Jing, Y., Shen, H. and Zhang, L. (2019): The recent developments in cloud removal approaches of MODIS snow cover product. Hydrology and Earth System Science, 23(5): 2401-2416. doi: 10.5194/hess-23-2401-2019
Lindner, L., Dzierżek, J., Marciniak, B. and Nitychoruk, J. (2003): Outline of Quaternary glaciations in the Tatra Mountains: Their development, age and limits. Geological Quarterly, 47(3): 269-280.
Liu, C., Huang, H., Hui, F., Zhang, Z. and Cheng, X. (2021): Fine-resolution mapping of Pan-Arctic lake ice-off phenology based on dense Sentinel-2 time series data. Remote Sensing, 13(14): 2742. doi: 10.3390/rs13142742
Livingstone, D. M. (1997): Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37: 407-439. doi: 10.1023/A:1005371925924
Livingstone, D. M., Adrian, R., Blenchner, T., George, G. and Weyhwenmeyer, G. A. (2009): Lake ice phenology. In: G. George (ed.): The Impact of Climate Change on European Lakes, London: Springer, pp. 51–61. doi: 10.1007/978-90-481-2945-4
López-Burgos, V., Gupta, H. V. and Clark, M. P. (2013): Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrology and Earth System Science, 17(5): 1809-1823. doi: 10.5194/hess-17-1809-2013
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, K. M. and Vuglinski, V. S. (2000): Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289(5485): 1743-1746. doi: 10.1126/science.289.5485.1743
Makos, M., Dzierżek, J., Nitychoruk, J. and Zreda, M. (2014): Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the last glacial maximum. Quaternary Research, 82(1): 1-13. doi: 10.1016/j.yqres.2014.04.001
Murfitt, J., Duguay, C. R. (2020): Assessing the performance of methods for monitoring ice phenology of the World’s largest High Arctic lake using high-density time series analysis of Sentinel-1 data. Remote Sensing, 12(3): 382. doi: 10.3390/rs12030382
Newton, A. M. W., Mullan, D. J. (2021): Climate change and Northern Hemisphere lake and river ice phenology from 1931–2005. The Cryosphere, 15(5): 2211-2234. doi: 10.5194/tc-2020-172
Novikmec, M., Svitok, M., Kočický, D., Šporka, F. and Bitušík, P. (2013): Surface water temperature and ice cover of Tatra Mountains lakes depend on altitude, topographic shading, and bathymetry. Arctic, Antarctic, and Alpine Research, 45(1): 77-87. doi: 10.1657/1938-4246-45.1.77
Ohlendorf, C., Bigler, C., Goudsmit, G. H., Lemcke, G., Livingstone, D. M., Lottter, A. F., Müller, B. and Sturm, M. (2000): Causes and effects of long ice cover on a remote high Alpine Lake. Journal of Limnology, 5(S1): 65-80. doi: 10.4081/jlimnol.2000.s1.65
Pawłowski, B. (2018): Changes in the course of ice phenomena on Morskie Oko in the Tatra Mountains from 1963 to 2012 and the implications for tourism. Limnological Review, 18(4): 167-173. doi: 10.2478/limre-2018-0018
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B. et al. (2015): Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5: 424-430. doi: 10.1038/nclimate2563
Pierson, D. C., Weyhenmeyer, G. A., Arvola, L., Benson, B. J., Blenckner, T., Kratz, T., Livingstone, D. M., Markensten, H., Marcez, G., Pettersson, K. and Weathers, K. (2011): An automated method to monitor lake ice phenology. Limnology and Oceanography: Methods, 9(2): 74-83. doi: 10.4319/lom.2010.9.0074
Preston, D. L., Caine, N., Mcknight, D. M., Williams, M. W., Hell, K., Miller, M. P., Hart, S. J. and Johnson, P. T. J. (2016): Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophysical Research Letters, 43(10): 5353-5360. doi: 10.1002/ 2016GL069036
Qi, M., Liu, S., Yao, X., Xie, F. and Gao, Y. (2020): Monitoring the ice phenology of Qinghai Lake from 1980 to 2018 using multisource remote sensing data and Google Earth engine. Remote Sensing, 12(14): 2217. doi: 10.3390/rs12142217
Qi, M., Yao, X., Li, X., Duan, H., Gao, Y. and Liu, J. (2019): Spatiotemporal characteristics of Qinghai Lake ice phenology between 2000 and 2016. Journal of Geographical Sciences, 29: 115-130. doi: 10.1007/s11442-019-1587-0
Ritchie, J. C., Zimba, P. V. and Everitt, J. H. (2003): Remote sensing techniques to assess water quality. Photogrammetric Engineering and Remote Sensing, 69(6): 695-704. doi: 10.14358/ PERS.69.6.695
Sharma, S., Blagrave, K., Magnusson, J. J., O’reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L. and Woolway, R. I. (2019): Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9: 227-231. doi: 10.1038/s41558-018-0393-5
Sharma, S., Filazzola, A., Nguyen, T., Imrit, M. S., Blagrave, K. et al. (2022): Long-term ice phenology records spanning up to 578 years for 78 lakes around the Northern Hemisphere. Sci Data, 9: 318. doi: 10.1038/s41597-022-01391-6
Sharma, S., Magnuson, J. J., Batt, R. D., Winslow, L. A., Korhonen, J. and Aono, Y. (2016): Direct observations of ice seasonality reveal changes in climate over the past 320–570 years. Scientific Reports, 6: 25061. doi: 10.1038/srep25061
Sharma, S., Meyer, M. F., Culpepper, J., Yang, X., Hampton, S. et al. (2020): Integrating perspectives to understand lake ice dynamics in a changing World. Journal of Geophysical Research: Biogeosciences, 125(8): 5799. doi: 10.1029/2020JG005799
Shiklomanov, A. I., Lammers, R. B. and Vörösmarty, C. J. (2002): Widespread decline in hydrological monitoring threatens Pan-Arctic Research. EOS Transactions, American Geophysical Union, 83(2): 13-17. doi: 10.1029/2002EO000007
Solarski, M., Rzętała, M. (2022): Determinants of spatial variability of ice thickness in lakes in High Mountains of the temperate zone – The case of the Tatra Mountains. Water, 14(15): 2360. doi: 10.3390/w14152360
Šporka, F., Livingstone, D. M., Stuchlík, E., Turek, J. and Galas, J. (2006): Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia, 61(18): 77-90. doi: 10.2478/s11756-006-0121-x
Štefková, E., Šporka, F. (2001): Long–term ecological research of high mountains lakes in the High Tatras (Slovakia). Ekológia (Bratislava), 20: 101-106.
Su, L., Che, T. and Dai, L. (2021): Variation in ice phenology of Large Lakes over the Northern Hemisphere based on passive microwave remote sensing data. Remote Sensing, 13(7): 1389. doi: 10.3390/rs13071389
Sun, L., Wang, B., Ma, Y., Shi, X. and Wang, Y. (2023).: Analysis of ice phenology of Middle and Large Lakes on the Tibetan Plateau. Sensors, 23(3): 1661. doi: 10.3390/s23031661
Surdu, C. M., Duguay, C. R., Pour, H. K. and Brown, L. C. (2015): Ice freeze-up and break-up detection of Shallow Lakes in North Alaska with Spaceborne SAR. Remote Sensing, 7(5): 6133-6159. doi: 10.3390/rs70506133
Thompson, R., Kamenik, C. and Schmidt, R. (2005): Ultra-sensitive Alpine lakes and climate change. Journal of Limnology, 64(2): 139-152. doi: 10.4081/jlimnol.2005.139
Weyhenmeyer, G. A., Westöö, A. K. and Willén, E. (2008): Increasingly ice-free winters and their effects on water quality in Sweden’s largest lakes. Hydrobiologia, 199: 111-118. doi: 10.1007/978-1-4020-8379-2_13
Woolway, R. I., Merchant, C. J. (2019): Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12: 271-276. doi: 10.1038/s41561-019-0322-x
Yang, Q., Song, K., Wen, Z., Hao, X. and Fang, C. (2019): Recent trends of ice phenology for eight large lakes using MODIS products in Northeast China. International Journal of Remote Sensing, 40(14): 5388-5410. doi: 10.1080/01431161.2019.1579939
Zasadni, J., Kłapyta, P. (2014): The Tatra Mountains during the last glacial maximum. Journal of Maps, 10(3): 440-456. doi: 10.1080/17445647.2014.885854
Zhang, S., Gao, H. (2016): A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing. Geophysical Research Letters, 43(15): 8052-8059. doi: 10.1002/2016GL069560
Zhang, S., Pavelsky, T. M., D Arp, C. and Yang, X. (2021a): Remote sensing of lake ice phenology in Alaska. Environmental Research Letters, 16(6): 064007. doi: 10.1088/1748-9326/abf965
Zhang, X., Wang, K. and Kirillin, G. (2021b): An automatic method to detect lake ice phenology using MODIS daily temperature imagery. Remote Sensing, 13(14): 2711. doi: 10.3390/ rs13142711
Web sources / Other sources
Copyright © 2025 Kristína Hrivnáková, Martin Buliak, Juraj Hreško