Urban soil mycobiota and its potential danger for human health in the Subarctic

Vol.14,No.2(2024)

Abstract

The quantitative and qualitative parameters of cultivable microfungi communities in urban soils of Subarctic (Apatity, Murmansk region, Russia) were evaluated. In total, 21 species belonging to 11 genera, 10 families, 7 orders, 5 classes, and 2 divisions were distinguished. We determined the proportion of allergenic, toxigenic, and opportunistic microfungi and their potential pathogenicity for humans based on extracellular enzyme activity. The number of microfungi in urban soils varied from 1×103 to 9×104 CFU g-1 and was lower than in the forest soil (background) except in the recreational zone. In urban soils, there was a decrease in species diversity compared to forest soil and a significant change in species diversity, as evidenced by the low value of the Sørensen index (28%). Fungi that pose a threat to human health made up to 85% of the total number of isolated species. The most dangerous genus in urban soil was Aspergillus. An increase in their shares and frequency of occurrence in urban soils compared to the background was found as well. We noted the appearance of dangerous fungi belonging to the RG2 group, an increase in the number of toxigenic (by 15%) microfungi in urban soils. According to the mycological risk index (Im = 6.7-8.4), urban soils were classified as dangerous in Apatity. Microfungal strains with higher extracellular activity of proteinase and phospholipase enzymes than in the background soil were isolated from urban soils. These species also had the ability to grow at human body temperature. Regular monitoring of allergenic, opportunistic and toxigenic fungi in urban soils allows us to assess their potential impact on residents of Northern regions and recommend minimizing contact with the soil and hard road surfaces. This is especially important for preschool children, in order to reduce the likelihood of interaction with opportunistic fungi.


Keywords:
opportunistic; allergenic; toxigenic microfungi; mycological risk; enzymatic activity; northern region
References

Abdolshahi, A., Shokrollahi Yancheshmeh, B. (2020): Food contamination. In: S. Sabuncuoglu (ed.): Mycotoxins and food safety. Intech Open, London, pp. 5–16.

Ahlroth Pind, C., Gunnbjörnsdottir, M., Bjerg, A., Järvholm, B., Lundbäck, B., Malinovschi, A., Midelveld, R., Sommar, J. N., Norbäck, D. and Janson, C. (2017): Patient-reported signs of dampness at home may be a risk factor for chronic sinusitis: A cross-sectional study. Clinical & Experimental Allergy, 47(11): 1383-1389. doi: 10.1111/cea.12976

Bakhmatova, K. A., Matynyan, N. N. and Sheshukova, A. A. (2022): Anthropogenic soils of urban parks: A review. Eurasian Soil Science, 55(1): 64-80. doi: 10.1134/S1064229322010021

Barnes, C. (2019): Fungi and atopy. Clinical Reviews in Allergy & Immunology, 57(3): 439-448. doi: 10.1007/s12016-019-08750-z

Bogomolova, E. V., Minenko, E. A. and Kirtsideli, I. Y. (2007): Potential virulence of opportunistic fungi isolated from museum environment. Mikologiya i fitopatologiya [Mycology and Phytopathology], 41: 113-119. (In Russian).

Bogomolova, E. V., Velikova, T. D., Goryaeva, A. G., Ivanova, A. M., Kirtsideli, I. Y., Lebedeva, E. V., Mamaeva, N. Y., Panina, L. K., Popikhina, E. A., Smolyanitskaya, O. L. and Trepova, E. S. (2012): Microfungi in the air of Saint Petersburg. Khimizdat, Saint Peterburg, Russia, 215 p. (In Russian).

Bornehag, C. G., Blomquist, G., Gyntelberg, F., Jarvholm, B., Malmberg, P., Nordvall, L., Nielsen, A., Pershagen, G. and Sundell, J. (2001): Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to «dampness» in buildings and health effects (NORDDAMP). Indoor Air, 11: 72-86. doi: 10.1034/j.1600-0668.2001.110202.x

Bridget Gleeson, D. (2022): Soil biological processes in urban soils. In: A.W. Rate (ed.): Urban Soils: Principles and Practice. Springer Cham, Switzerland, pp. 243–291. doi: 10.1007/978-3-030-87316-5

Brito, F. F., Mur, P., Leal, J. A., Galindo, P. A., Gómez, E., Borja, J., Barber, D. and Lombardero, M. (2003): Penicillium nalgiovense as an occupational and contact allergen. Journal of Allergy and Clinical Immunology, 112: 213-215. doi: 10.1067/mai.2003.1566

Brunke, S., Mogavero, S., Kasper, L. and Hube, B. (2016): Virulence factors in fungal pathogens of man. Current Opinion in Microbiology, 32: 89-95. doi: 10.1016/j.mib.2016.05.010

de Hoog, G. S., Guarro, J., Gené, J., Ahmed, S., Al-Hatmi, A. M. S., Figueras, M. J. and Vitale, R. G. (2020): Atlas of Clinical Fungi, 4th edition. Foundation Atlas of Clinical Fungi, Hilversum, Netherlands, 1599 p.

Delgado-Baquerizo, M., Eldridge, D. J., Liu, Y. R., Sokoya, B., Wang, J. T., Hu, H. W., He, J. Z., Bastida, F., Moreno, J. L., Bamigboye, A. R., Blanco-Pastor, J. L., Cano-Díaz, C., Illán, J. G., Makhalanyane, T. P., Siebe, C., Trivedi, P., Zaady, E, Verma, J. P., Wang, L., Wang, J., Grebenc, T., Peñaloza-Bojacá, G. F., Nahberger, T. U., Teixido, A. L., Zhou, X. Q., Berdugo, M., Duran, J., Rodríguez, A., Zhou, X., Alfaro, F., Abades, S., Plaza, C., Rey, A., Singh, B. K., Tedersoo, L. and Fierer, N. (2021): Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 7(28): eabg5809. doi: 10.1126/sciadv.abg5809

Demin, V. I., Kozelov, B. V., Yelizarova, N. I. and Menshov, Y. V. (2016): Geomorphological factors of the formation of the “heat island” in Apatity. Physics of Auroral Phenomena, 39(1): 154-157. (In Russian).

Domsch, K. H., Gams, W. and Anderson, T. H. (2007): Compendium of Soil Fungi. 2nd ed. IHW Verlag, Ehing, Germany, 672 p.

Erum, R., Samad, F., Khan, A. and Kazmi, S. U. (2020): A comparative study on production of extracellular hydrolytic enzymes of Candida species isolated from patients with surgical site infection and from healthy individuals and their co-relation with antifungal drug resistance. BMC microbiology, 20(1): 1-12. doi: 10.1186/s12866-020-02045-6

Esch, R. E. (2004): Manufacturing and standardizing fungal allergen products. Journal of Allergy and Clinical Immunology, 113: 210-215. doi: 10.1016/j.jaci.2003.11.024

Esch, R. E., Bernstein, J. A. and Vijay, H. M. (2020): Fungal allergens. In: R. F. Lockey, D. K. Ledford (eds.): Allergens and allergen immunotherapy. CRC Press, Boca Raton, pp. 189–211. doi: 10.1201/9781351208994

Evdokimova, G., Korneykova, M., Lebedeva, E. and Kalmykova, V. (2009) Micromycetes in sands and sandy soils of natural and technogenic origin. Mycology and Phytopathology, 43(2): 84-92.

Fotedar, R., Al-Hedaithy, S. S. А. (2005): Comparison of phospholipases and proteinase activity in Candida albicans and Candida dubliniensis. Mycoses, 48: 62-67. doi: 10.1111/ j.1439-0507.2004.01057.x

Frisvad, J. C., Filtenborg, O. (1989): Terverticillate penicillia: Chemotaxonomy and mycotoxin production. Mycologia, 81: 837-861. doi: 10.1080/00275514.1989.12025674

Gaskell, G. J., Carter, D. A., Britton, W. J., Tovey, E. R., Benyon, F. H. L. and Løvborg, U. (1997): Analysis of the internal transcribed spacer regions of ribosomal DNA in common airborne allergenic fungi. Electrophoresis, 18(9): 1567-1569. doi: 10.1002/elps.1150180914

Gharaghani, M., Shabanzadeh, M., Jafarian, H. and Zarei Mahmoudabadi, A. (2022): ABC typing and extracellular enzyme production of Candida albicans isolated from Candida vulvovaginitis. Journal of Clinical Laboratory Analysis, 36(1): e24117. doi: 10.1002/jcla.24117

Glushakova, A. M., Kachalkin, A. V. and Chernov, I. Y. (2011): Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil. Eurasian Soil Science, 44(8): 886-892. doi: 10.1134/S1064229311080059

Gnat, S., Łagowski, D., Nowakiewicz, A. and Dyląg, M. (2021): A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5): 2095-2113. doi: 10.1111/jam.15032

Gómez-Brandón, M., Herbón, C., Probst, M., Fornasier, F., Barral, M. T. and Paradelo, R. (2022): Influence of land use on the microbiological properties of urban soils. Applied Soil Ecology, 175: 104452. doi: 10.1016/j.apsoil.2022.104452

Gubkina, L. V., Samodova, A. V. and Dobrodeeva, L. K. (2024): Distinctive aspects of the immune status of the Kola Saami and Russians living in the Far North. American Journal of Human Biology, 36(1): e23969. doi: 10.1002/ajhb.23969

Guruceaga, X., Perez-Cuesta, U., Abad-Diaz de Cerio, A., Gonzalez, O., Alonso, R. M., Hernando, F. L., Ramirez-Garcia, A. and Rementeria, A. (2020): Fumagillin, mycotoxin of Aspergillus fumigatus: Biosynthesis, biological activities, detection, and applications. Toxins, 12: 7. doi: 10.3390/toxins12010007

Ivanova, A. E., Nikolaeva, V. V. and Marfenina, O. E. (2015): Changes in the cellulolytic activity of urban soils induced by the removal of plant litter (using Moscow as an example). Eurasian Soil Science, 48(5): 501-508. doi: 10.1134/S1064229315030059

Jarvis, B. B., Sorenson, W. G., Hintikka, E. L., Nikulin, M., Zhou, Y., Jiang, J., Wang, S., Hinkley, S., Etzel, R. A. and Dearborn, D. (1998): Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Applied and Environmental Microbiology, 64(10): 3620-3625. doi: 10.1128/AEM.64.10.3620-3625.1998

Karpunina, T. I., Olina, A. A., Mashurov, M. G., Chemurziyeva, N. V. and Drabkova, V. A. (2006): Phospholipases of opportunistic fungi: Their potential role in pathogenesis and diagnosis of mycoses. Problemy meditsinskoy mikologii [Problems of Medical Mycology], 8: 41-46. (In Russian).

Kaviya, N., Upadhayay, V. K., Singh, J., Khan, A., Panwar, M. and Singh, A. V. (2019): Role of microorganisms in soil genesis and functions. In: A. Varma, D. K. Choudhary (eds.): Mycorrhizosphere and pedogenesis, Springer, Singapore, pp. 25–52. doi: 10.1007/978-981-13-6480-8

Khan, M. S. A., Ahmad, I., Aqil, F., Owais, M., Shahid, M. and Musarrat, J. (2010): Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. In: I. Ahmad, M. Owais, M. Shahid, F. Aqil (eds.): Combating Fungal Infections: Problems and Remedy. Springer, Berlin, Heidelberg, pp. 21–45. doi: 10.1007/978-3-642-12173-9

Kirtsideli, I. Y. (2019): Soil microfungi n the ecosystems of the Arctic and Antarctic. Ph.D. thesis, Saint Peterburg, Russia, 459 p. (In Russian).

Klich, M. A. (2002): Identification of common Aspergillus species. CBS Fungal Biodiversity Centre, Utrecht, Netherlands, 116 p.

Korneykova, M. V. (2018): Comparative analysis of the number and structure of the complexes of microscopic fungi in tundra and taiga soils in the north of the Kola Peninsula. Eurasian Soil Science, 51 (1): 89-95. doi: 10.1134/S1064229318010106

Korneykova, M. V., Redkina, V. V. and Shalygina, R. R. (2018): Algological and mycological characterization of soils under pine and birch forests in the Pasvik Reserve. Eurasian Soil Science, 51(2): 211-220. doi: 10.1134/S1064229318020047

Korneykova, M. V., Lebedeva, E. V. (2016): Potential pathogenicity of micromycetes isolated from anthropogenically polluted and background soils of the Kola Peninsula. In: Materialy II Mezhdunarodnoy nauchnoy konferentsii "Biologiya, sistematika i ekologiya gribov i lishaynikov v prirodnykh ekosistemakh i agrofitotsenozakh" [Materials of the II International Scientific Conference "Biology, Systematics and Ecology of Fungi and Lichens in Natural Ecosystems and Agrophytocenoses"]. Kolorgrad, Minsk, Belarus, pp. 133–139. (In Russian).

Krishnan, A., Alias, Z., Convey, P., González-Aravena, M., Smykla, J., Rizman-Idid, M. and Alias, S. A. (2022): Temperature and pH profiling of extracellular amylase from Antarctic and Arctic soil microfungi. Fermentation, 8(11): 601. doi: 10.3390/fermentation8110601

Krishnan, A., Convey, P., Gonzalez, M., Smykla, J. and Alias, S. A. (2018): Effects of temperature on extracellular hydrolase enzymes from soil microfungi. Polar Biology, 41: 537-551. doi: 10.1007/s00300-017-2215-z

Kumar, S., Jain, T. and Banerjee, D. (2019): Fungal diseases and their treatment: A holistic approach. In: S. Hameed, Z. Fatima (eds.): Pathogenicity and Drug Resistance of Human Pathogens: Mechanisms and Novel Approaches. Springer, Singapore, pp. 111–134. doi: 10.1007/978-981-32-9449-3

Leitão, J. H. (2020): Microbial virulence factors. International Journal of Molecular Sciences, 21(15): 5320. doi: 10.3390/ijms21155320

López-Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín-Vicente, A., Capilla, J., Di Pietro, A. and López-Berges, M. S. (2018): Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 19: 440-453. doi: 10.1111/mpp.12536

Marfenina, O. E. (1999): Anthropogenic impact on microscopic fungal complexes in soils. Ph.D. thesis, Moscow, Russia, 294 p. (In Russian).

Marfenina, O. E. (2005): Anthropogenic ecology of soil fungi. Meditsina dlya vsekh, Moscow, Russia, 196 p. (In Russian).

Marfenina, O. E., Bubnova, E. N., Semenova, T. A., Ivanova, A. E. and Danilogorskaya, A. A. (2014): Microfungi of the genus Aspergillus: distribution and accumulation in different conditions of natural environments (on example of European Russia). Mikologiya i fitopatologiya [Mycology and Phytopathology], 48: 10-24. (In Russian).

Marfenina, O. E., Kul'ko, A. B., Ivanova, A. E. and Sogonov, M. V. (2002): The microfungal communities in the urban outdoor environment. Mikologiya i Fitopatologiya [Mycology and Phytopathology], 36 (4): 22-32. (In Russian).

Mayer, M., Rewald, B., Matthews, B., Sanden, H., Rosinger, C., Katzensteiner, K., Gorfer, M., Berger, H., Tallian, C., Berger, T. W. and Godbold, D. L. (2021): Soil fertility relates to fungal – mediated decomposition and organic matter turnover in a temperate mountain forest. New Phytologist, 231(2): 777-790. doi: 10.1111/nph.17421

Meng, T., Wang, Q., Abbasi, P. and Ma, Y. (2019): Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Applied Microbiology and Biotechnology, 103: 1497-1509. doi: 10.1007/s00253-018-9564-6

Norbäck, D. (2020): Dampness, indoor mould and health. In: R. Kishi, D. Norbäck, A. Araki (eds.): Indoor Environmental Quality and Health Risk toward Healthier Environment for All. Springer, Singapore, pp. 199–216. doi: 10.1007/978-981-32-9182-9

Oliveira, M., Oliveira, D., Lisboa, C., Boechat, J. L. and Delgado, L. (2023): Clinical manifestations of human exposure to fungi. Journal of Fungi, 9(3): 381. doi: 10.3390/ jof9030381

Pandey, N., Gupta, M. K. and Tilak, R. (2018): Extracellular hydrolytic enzyme activities of the different Candida spp. isolated from the blood of the Intensive Care Unit-admitted patients. Journal of Laboratory Physicians, 10(04): 392-396. doi: 10.4103/JLP.JLP_81_18

Pankova, I. G., Kirtsideli, I. Y., Iliushin, V. A., Zelenskaya, M. S., Vlasov, D. Y., Gavrilo, М. V. and Barantsevich, E. P. (2023): Diversity of microfungi on wood of the coastal zone of Heiss Island (Franz Joseph Land Archipelago). Mikologiya i Fitopatologiya [Mycology and Phytopathology], 57(3): 184-197. (In Russian). doi: 10.31857/S0026364823030091

Perrone, G., Susca, A. (2017): Penicillium species and their associated mycotoxins. In: A. Moretti, A. Susca (eds.): Mycotoxigenic Fungi. Methods in Molecular Biology. Humana Press, New York, pp. 107–119. doi: 10.1007/978-1-4939-6707-0_5

Perrone, G., Ferrara, M., Medina, A., Pascale, M. and Magan, N. (2020): Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms, 8(10): 1496. doi: 10.3390/microorganisms8101496

Picková, D., Ostrý, V., Malíř, J., Toman, J. and Malíř, F. (2020): A review on mycotoxins and microfungi in spices in the light of the last five years. Toxins, 12(12): 789. doi: 10.3390/ toxins12120789

Pirogov, D. M. (2018): Influence of conditional-pathogenic fungi, allocated from soil, on the human organism in the conditions of the extreme North. Izvestiya Rossiyskoy voyenno-meditsinskoy akademii [Bulletin of the Russian Military Medical Academy], 37: 125-128. (In Russian).

Pitt, J. I., Leistner, L. (1991): Toxigenic Penicillium species. In: D. Smith, R. Henderson (eds.): Mycotoxins and animal foods. CRC Press, Boca Raton, Boston, London, pp. 81–99.

Price, M., Wilkinson, I. D. and Gentry, L. O. (1982): Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia, 20: 7-14. doi: 10.1080/ 00362178285380031

Reddy, S. M., Girisham, S., Reddy, V. K. and Surekha, M. (2015): Mycotoxins problem and its management environmental mycology. Scientific Publishers, Warangal, India, 514 p.

Sabale, S. N., Suryawanshi, P. P. and Krishnaraj, P. U. (2019): Soil metagenomics: Concepts and applications. In: W. N. Hozzein (ed.): Metagenomics-basics, methods and applications. BoD - Books on Demand GmbH, Norderstedt, Germany, pp. 9–35.

Satton, D., Fotergill, A. and Rinaldi, M. (2001): Key pathogenic and conditionally pathogenic fungi. Мir, Мoscow, Russia, 486 p. (In Russian).

Sav, H., Ozakkas, F., Altınbas, R., Kiraz, N., Tümgör, A., Gümral, R., Döğen, A., Ilkit, M. and de Hoog, G. S. (2016): Virulence markers of opportunistic black yeast in Exophiala. Mycoses, 59(6): 343-350. doi: 10.1111/myc.12478

Sazanova, K. V., Senik, S. V., Kirtsideli, I. Y. and Shavarda, A. L. (2019): Metabolomic profiling and lipid composition of Arctic and Antarctic strains of micromycetes Geomyces pannorum and Thelebolus microsporus grown at different temperatures. Microbiology, 88: 282-291. doi: 10.1134/S0026261719030111

Schmidt, R., Mitchell, J. and Scow, K. (2019): Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities. Soil Biology and Biochemistry, 129: 99-109. doi: 10.1016/j.soilbio.2018.11.010

Seifert, K., Morgan-Jones, G., Gams, W. and Kendrick, B. (2011): The genera of Hyphomycetes. Utrecht CBS, Reus, Spain, 997 p.

Seifert, K. A., Gams, W. (2011): The genera of Hyphomycetes–2011 update. Persoonia: Molecular Phylogeny and Evolution of Fungi, 27: 119-129. doi: 10.3767/003158511X617435

Shchegoleva, L. S., Shashkova, E. Y., Filippova, O. E., Nekrasova, M. V., Sergeeva, T. B. and Menshikova, M. V. (2019): The immune status of Subarctic residents with different professional backgrounds. IOP Conference Series: Earth and Environmental Science, 263(1): 012049. doi: 10.1088/1755-1315/263/1/012049

Shen, H. D., Tam, M. F., Tang, R. B. and Chou, H. (2007): Aspergillus and Penicillium allergens: focus on proteases. Current Allergy and Asthma Reports, 7(5): 351-356. doi: 10.1007/s11882-007-0053-8

Simon-Nobbe, B., Denk, U., Pöll, V., Rid, R. and Breitenbach, M. (2008): The spectrum of fungal allergy. International Archives of Allergy and Immunology, 145: 58-86. doi: 10.1159/ 000107578

Skóra, J., Sulyok, M., Nowak, A., Otlewska, A. and Gutarowska, B. (2017): Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from working environments. International Journal of Environmental Science and Technology, 14: 595-608. doi: 10.1007/s13762-016-1172-3

Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., LLNL Soil Microbiome Consortium and Pett-Ridge, J. (2022): Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20(7): 415-430. doi: 10.1038/s41579-022-00695-z

Sztandera-Tymoczek, M., Szuster-Ciesielska, A. (2023): Fungal aeroallergens–The impact of climate change. Journal of Fungi, 9(5): 544. doi: 10.3390/jof9050544

Varentsov, M., Konstantinov, P., Baklanov, A., Esau, I., Miles, V. and Davy, R. (2018): Anthropogenic and natural drivers of a strong winter urban heat island in a typical arctic city. Atmospheric Chemistry and Physics, 18: 17573-17587. doi: 10.5194/acp-18-17573-2018

Vijay, H.M., Abebe, M., Kumar, V., De Vouge, M., Schrader, T., Thaker, A., Comtois, P. and Escamilla-Garcia, B. (2005): Allergenic and mutagenic characterization of 14 Penicillium species. Aerobiologia, 21: 95-103. doi: 10.1007/s10453-005-4179-7

Weikl, F., Radl, V., Munch, J. C. and Pritsch, K. (2015): Targeting allergenic fungi in agricultural environments aids the identification of major sources and potential risks for human health. Science of The Total Environment, 529: 223-230. doi: 10.1016/j.scitotenv.2015.05.056

Xu, J. (2022): Assessing global fungal threats to humans. mLife, 1(3): 223-240. doi: 10.1002/mlf2. 12036

Yike, I. (2011): Fungal proteases and their pathophysiological effects. Mycopathologia, 171(5): 299-323. doi: 10.1007/s11046-010-9386-2

Zhang, J., Li, S., Sun, X., Tong, J., Fu, Z. and Li, J. (2019): Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types. Sustainability, 11(5): 1395. doi: 10.3390/su11051395

Zvyagintsev, D. G. (1991): Methods of soil microbiology and biochemistry. Moscow State University Publ., Moscow, Russia, 304 p. (In Russian).

Web sources / Other sources

[1] Advisory Committee on Dangerous Pathogens (2023): The Approved List of biological agents. Health and Safety Executive, United Kingdom, 2023, 44 p.

[2] Australian/New Zealand Standard AS/NZS 2243.3:2010 (2010): Safety in laboratories. Part 3: Microbiological aspects and containment facilities. Australia, New Zealand, 2010, 182 p.

[3] Centers for Disease Control and Prevention (2020): Biosafety in Microbiological and Biomedical Laboratories. Government Printing Office, U.S. Department of Health and Human Services, USA, 2020, 604 p.

[4] Department of Biotechnology (2021): List of infective Microorganisms corresponding to different Risk Groups. Ministry of Science & Technology, Government, India, 2021, 35 p.

[5] Directive 2000/54/EC (2000): Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. European Union, 2000, 47 p.

[6] ISO 18400-206:2018 (2018): Soil Quality—Sampling—Part. 206: Collection, Handling and Storage of Soil under Aerobic Conditions for the Assessment of Microbiological Processes, Biomass and Diversity in the Laboratory; ISO: Geneva, Switzerland, 2018, 10 p.

[7] National Health Commission of the People's Republic (2023): Catalogue of Pathogenic Microorganisms Infectious in Humans. China, 2023, 42 p. (In Chinese).

[8] National Institutes of Health (2019): NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines). Department of Health and Human Services, USA, 2019, 149 p.

[9] Sanitary-and-epidemiological rules SR 3.3686-21 (2021): Sanitary and epidemiological requirements for the prevention of infectious diseases. Rospotrebnadzor, Moscow, Russia (In Russian).

[10] World Health Organization (2009): WHO Guidelines for Indoor Air Quality: Dampness and Mould. Copenhagen, Denmark. Copenhagen and Bonn: WHO Regional Office for Europe, 2009, 248 p.

[11] DSMZ (2024): German Collection of Microorganisms and Cell Cultures: https://www.dsmz.de/dsmz (Accessed 15.01.2024).

[12] Index Fungorum (2024): A nomenclatural database: http://www.indexfungorum.org. (Accessed 15.01.2024).

[13] Public Health Agency of Canada (2024): ePATHogen - Risk Group Database: https://health.canada.ca/en/epathogen (Accessed 15.01.2024).

Metrics

0

Crossref logo

0

0

web of science logo


5

Views

7

PDF views