Activity of catalase and superoxidedismutase in leaves of halophyte plants under the tidal dynamics of the White Sea
Vol.14,No.2(2024)
Activity of catalase (CAT) and superoxide dismutase (SOD) enzymes in the leaves of halophyte plants Triglochin maritima L., Plantago maritima L., Tripolium vulgare Bess. ex Nees and Zostera marina L. was investigated in a 2-year field experiment carried out in the community of the middle littoral marsh on the Pomor (western) coast of the White Sea (Belomorsk region, Russia). The community Tripolium vulgare–Bolboschoenus maritimus–Triglochin maritima–Plantago maritima, was investigated during the tidal cycle. The plants grew under conditions of seawater pollution with high concentration of nitrates (43.68 mgl-1), iron (0.15 mgl-1), nickel (0.15 mgl-1) and lead (0.024 mgl-1). The total projective cover of species in the plant community reached 50% for T. vulgare, and 20% for other dominant species. A direct positive correlation was found between the activity of CAT and SOD in halophyte leaves (r = 0.51–0.68). This research revealed the species specificity of the enzyme activity level in Z. marina. The activity of CAT and SOD in its leaves was significantly lower (0.16±0.06 µmol H2O2/µg of protein; 2.61±0.08 c.u./mg of protein, respectively), than in other species. The maximum values of CAT activity were found in T. vulgare and T. maritima (0.23–0.26 μmol H2O2/μg of protein), and SOD in T. vulgare 4.65 ± 1.12 c.u./mg of protein. The activity of CAT in plant leaves varied over a wide range (1.14–11.83 c.u./mg of protein) and did not depend on the tidal dynamics of the sea. In halophyte leaves, the regulation of plant redox metabolism under hypoxic conditions during flooding is supported by an increase in SOD activity, on average 1.98–2.95 at low tide and 4.12±6.73 c.u./mg of protein at high tide.
plant communities; salt marshes; tidal cycle; halophytes; catalase; superoxide dismutase; the White Sea
Alatorre, E. B., Shabala, S., Chen, Z. and Pottosin, I. I. (2013): Reduced tonoplast fast-activating and slow-activating channels activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiology, 162(2): 940-952. doi: 10.1104/pp.113.216572
Alscher, R. G., Erturk, N. and Heath, L. S. (2002): Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331-1341. doi: 10.1093/jexbot/53.372.1331
Allen, R. G., Balin, A. K. (1989): Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Radical Biology & Medicine, 6(6): 631-61. doi: 10.1016/0891-5849(89)90071-3
Al-Shamsi, N., Hussain, M. I. and El-Keblawy, A. (2020): Physiological responses of the xerohalophyte Suaeda vermiculata to salinity in its hyper-arid environment. Flora – Morphology Distribution Functional Ecology of Plants, 273: 151705. doi: 10.1016/j.flora.2020. 151705
Anjium, N.A., Sharma, P., Gilll, S.S., Hasanuzzaman, M., Khan, E.A., Kachhap, K. and Sofo, A. (2016): Catalase and ascorbate peroxidase representative H2O2 detoxifying heme enzymes in plants. Environmental Science and Pollution Research, 23: 19002-19029. doi: 10.1007/s11356-016-7309-6
Apel, K., Hirt, H. (2004): Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373-99. doi: 10.1146/annurev.arplant. 55.031903.141701
Babaei-Bondarti, Z., Shahpiri, A. (2020): A metallothionein type 2 from Avicennia marina binds to iron and mediates hydrogen peroxide balance by activation of enzyme catalase. Phytochemistry, 176: 112396. doi: 10.1016/j.phytochem.2020.112396
Blokhina, O., Virolainen, E. and Fagerstedt, K. V. (2003): Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 91(2): 179-194. doi: 10.1093/aob/ mcf118
Bose, J., Rodrigo-Moreno, A. and Shabala, S. (2014): ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5): 1241-1257. doi: 10.1093/jxb/ert430
Bose, J., Munns, R., Shabala, S., Gillihan, M., Pogson, B. and Tyerman, S. D. (2017): Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. Journal of Experimental Botany, 68(12): 3129-3143. doi: 10.1093/jxb/erx142
Bradford, M. M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. doi: 10.1006/abio.1976.9999
Brioukhanov, A., Netrusov, A. (2004): Catalase and superoxide dismutase: Distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Moscow), 69(9): 949-962. doi: 10.1023/B:BIRY.0000043537.04115.d9
Cardenas-Perez, S., Rajabi Dehnavi, A., Leszczynski, K., Lubinska-Mielinska, S., Ludwiczak, A. and Piernik, A. (2022): Salicornia europaea L. functional traits indicate its optimum growth. Plants, 11(8): 1051. doi: 10.3390/plants11081051
Chaturvedi, A. K., Patel, M. K., Mishra, A., Tiwari, V. and Jha, B. (2014): The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS One, 9(10): e111379. doi: 10.1371/journal.pone.0111379
Clemens, S., Palmgren, M. G. and Kramer, U. (2002): A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7): 309-315. doi: 10.1016/ s1360-1385(02)02295-1
Ellouzi, H., Ben Hamed, K., Cela, J., Munne-Bosch, S. and Abdelly, C. (2011): Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum, 142: 128-143. doi: 10.1111/j.1399-3054.2011.01450.x
Ershova, M. A., Nikerova, K. M. and Galibina, N. A. (2022): Some minor characteristics of spectrophotometric determination of antioxidant system and phenolic metabolism enzyme activity in wood plant tissues of Pinus sylvestris L. Protein and Peptide Letters, 29(8): 711-720. doi: 10.2174/0929866529666220414104747
Ghanem, A.-M. F. M., Mohamed, E., Kazem, A. M. M. A. and El-Ghamery, A. A. (2021): Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants, 10(6): 1100. doi: 10.3390/ plants10061100
Gulyaeva, E. N., Morozova, K. V., Markovskaya, E. F., Nikolaeva, N. N. and Zapevalova, D. S. (2016): Anatomical and morphological features of leaves of dominant species on the Barents Sea coast. Proceedings of Petrozavodsk State University, 2(155): 13-19. (In Russian).
Hafeez, M. B., Raza A., Zahra, N., Shaukat, K., Akram, M. Z., Iqbal, S. and Basra., S. M. A. (2021): Gene regulation in halophytes in conferring salt tolerance. In: Handbook of Bioremediation Physiological, Molecular and Biotechnological Interventions, pp. 341–370.
Hall, J. L. (2002): Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53: 1-11. doi: 10.1093/jexbot/53.366.1
Hasanuzzaman, M., Hossain, M. A., Da Silva, J. A. T. and Fujita, M. (2012): Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factor. In: B. Venkateswarlu, Arun K. Shanker, Chitra Shanker, M. Maheswari (eds.): Crop stress and its management: Perspectives and strategies. Springer, pp. 261–316. 10.1007/978-94-007-2220-0_8
Hasanuzzaman, M., Bhuyan, M. H. M., Zulfigar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M. and Fotopoulos, V. (2020): Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8): 681. doi: 10.3390/antiox9080681
Hassler, M. (1994–2024): World plants. Synonymic checklist and distribution of the world flora. Version 24.8; last update August 27th, 2024.
Ilyin, G. V., Usygina, I. S. and Kasatkina, N. E. (2015): Geoecological state of seas in the environment in the Russian Arctic under the present technogenic stresses. Bulletin of the Kola Science Center of the Russian Academy of Sciences, 21: 82-93. (In Russian).
Inupakutika, M. A., Sengupta, S., Devireddy, A. R., Azad, R. K. and Mittler, R. (2016): The evolution of reactive oxygen species metabolism. Journal of Experimental Botany, 67: 5933-5943. doi: 10.1093/jxb/erw382
Kaplin, P. A., Leontiev, O. V., Lukyanova, S. A. and Nikiforov, L. G. (1991): Shores. «Izdatel'stvo Mysl'». 479 р. (In Russian).
Knox, J. P, Dodge, A. D. (1985): Singlet oxygen and plants. Phytochemistry, 24: 889-896. doi: 10.1016/S0031-9422(00)83147-7
Köhl, I. (1997) : The effect of NaCl on growth: Dry matter allocation and ion uptake in salt marsh and inland populations of Armeria maritima. New Phytologist, 135: 213-225. doi: 10.1046/ j.1469-8137.1997.00639.x
Kreslavski, V. D., Allakhverdiev, S. L., Los, D. A. and Kuznetsov, V. V. (2012): Signaling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology, 59(2): 141-154. doi: 10.1134/S1021443712020057
Krzesłowska, M. (2011): The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33: 35-51. doi: 10.1007/s11738-010-0581-z
Kumar, A., Mann, A., Kumar, A., Kumar, N. and Meena., B. L. (2021): Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. International Journal of Phytoremediation, 23(3): 1-11. doi: 10.1080/15226514.2021.1874289
Lenstra, W. K., Egger, M., Van Helmond, N. A. G. M., Kritzberg, E., Conley, D. J. and Slomp, C. P. (2018): Large variations in iron input to an oligotrophic Baltic Sea estuary: Impact on sedimentary phosphorus burial. Biogeosciences, 15: 6979-6996. doi 10.5194/bg-15-6979-2018
Liu, G., Bafico, A., Harris, V. K. and Aaronson, S. A. (2003): A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Molecular and Cellular Biology, 23: 5825-5835. doi: 10.1128/MCB.23.16.5825-5835.2003
Lokhande, V. H., Srivastava, S., Patade, V. Y., Dwivedi, S., Tripathi, R. D., Nikam, T. D. and Suprasanna, P. (2011): Investigation of arsenic accumulation and tolerance in Sesuvium portulacastrum (L.). Chemosphere, 82: 529-534. doi: 10.1016/j.chemosphere.2010.10.059
Ludwiczak, A., Ciarkowska, A., Rajabi Dehnavi, A., Cardenas-Perez, S. and Piernik, A. (2023): Growth stage-, organ- and time-dependent salt tolerance of halophyte Tripolium pannonicum (Jacq.) Dobrocz. Life, 13(2): 462. doi: 10.3390/life13020462
Manousaki, E., Kalogerakis, N. (2011): Halophytes – An emerging trend in phytoremediation. International Journal of Phytoremediation, 13(10): 959-969. doi:10.1080/15226514.2010. 532241
Manousaki, T., Hull, P. M., Kushe, H., Machado-Scaffino, G., Franchini, P., Harod,C., Elmer, K. R. and Meyer, A. (2013): Parsing parallel evolution ecological divergence and differential gene expression in the adaptive radiations of thick-lipped midas cichlid fishes from Nicaragua. Molecular Ecology, 22: 650-669. doi: 10.1111/mec.12034
Markovskaya, E. F., Gulyaeva, E. N. (2020): Role of stomata in adaptation of Plantago maritima L. plants to tidal dynamics on the White Sea coast. Russian Journal of Plant Physiology, 67(1): 75-83. doi: 10.1134/S1021443719060086
Markovskaya, E. F., Terebova E. N. and Pavlova, M. A. (2024): The influence of salinity on the germination of halophyte seeds in the White Sea littoral: plasticity assessment. Advances of Modern Natural Science, 1: 80-86. (In Russian). doi: 10.17513/use.38211
Mittler, R. (2017): ROS are good. Trends in Plant Science, 22: 11-19. doi: 10.1016/j.tplants. 2016.08.002
Modarresi, M., Nematzadeh, G. and Mordian, F. (2013): Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis. Photosynthetica, 51: 621-629. doi: 10.1007/s11099-013-0060-z
Nikerova, K. M. (2020): Activity of enzymes of the antioxidant system when changing xylogenesis scenarios in Betula pendula Roth and Pinus sylvestris L. Dissertation for the degree of Candidate of Biological Sciences, specialty 03.01.05 – “Plant Physiology and Biochemistry”, 201 p.
Nikerova, K. M., Galibina, N. A., Chirva, O. V. and Klimova (Uspenskaya), A. V. (2021): Reactive oxygen species and components of the antioxidant system are participants in plant metabolism. Relationship with phenolic and carbohydrate metabolism. Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences, 3: 5-20. (In Russian). doi: 10.17076/eb1312
Novikov, M. A. (2017): On the background values of heavy metal content in bottom sediments of the Barents Sea. Bulletin of the Murmansk State Technical University, 20(1/2): 280-288. (In Russian). doi: 10.21443/1560-9278-2017-20-1/2-280-288
Pelloux, J., Rusterucci, C. and Mellerowicz, E. J. (2007): New insights into pectin methyl-esterase structure and function. Trends in Plant Science, 12: 267-277. doi: 10.1016/j.tplants. 2007.04.001
Pirasteh-Anoshen, H., Samadi, M., Kazemeini, S. A., Ozturk, M., Ludwiczak, A. and Piernik, A. (2023): ROS homeostasis and antioxidants in the halophytic plants and seeds. Plants, 12(17): 3023. doi: 10.3390/plants12173023
Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M.H., Koyro, H.-W., Ranieri, A., Abdelly, C. and Smaoui, A. (2010): Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101: 6822-6828. doi: 10.1016/j.biortech.2010.03. 097
Rahman, M. M., Mostofa, M. G., Keya, S. S., Siddiqui, M. N.,Ansary, M. M. U., Das, A. K., Rahman, M. A. and Tran, L.-S. P. (2021): Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences, 22(19): 10733. doi: 10.3390/ijms221910733
Rascio, N., Navari-Izzo, F. (2011): Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180: 169-181. doi: 10.1016/ j.plantsci.2010.08.016
Rozanov, A. G., Volkov, I. I. Kokryatskaya, N. M. and Yudin, M. V. (2006): Managanese and iron in the White Sea: Sedimentation and diagenesis. Lithology and Mineral Resources, 41(5): 483-501. doi:10.1134/S0024490206050087
Rozentsvet, O. A., Nesterov, V. N. and Bogdanova, E. S. (2017): Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russian Journal of Plant Physiology, 64(4): 464-477. doi: 10.1134/S1021443717040112
Sergienko, L. A. (2008): Flora and vegetation of the Arctic coasts and adjacent territories. Publishing house of PertSU, Petrozavodsk, 225 p. (In Russian).
Sergienko, L. A., Starodubtseva, A. A., Smolkova, O. V. and Markovskaya, E. F. (2015): The species of the genus Zostera L. in flora of White Sea’ Eastern coasts. Fundamental Research, 2: 2606-2613. (In Russian).
Shikov, A. E., Chirkova, T. V. and Emelyanov, V. V. (2021): Functions of reactive oxygen species in plant cells under normal conditions and during adaptation. Ecological Genetics, 19(4): 343-363. (In Russian). doi: 10.17816/ecogen75975
Shikov, A. E., Chirkova, T. V. and Emelyanov, V. V. (2020): Post-anoxia in plants: reasons, consequences, and possible mechanisms. Russian Journal of Plant Physiology, 67(1): 45-59. doi: 10.1134/S1021443720010203
Sonina, A. V., Tereboba, E. N., Dyachkova, T. Yu., Morozova, K. V. and Elkina, N. A. (2021): Ecological and biological features of Triglochin maritima L. in the biotopes of the littoral zone with different degree of flooding on the coast of the White sea. Czech Polar Reports, 11(2): 233-252. doi: 10.5817/CPR2021-2-16
Terebova, E. N., Markovskaya, E. F., Androsova, V. I. and Galibina, N. A. (2017): Potential for Salix schwerinii Е. Wolf to uptake heavy metals in the contaminated territories of mining industry in the north-west Russia. Siberian Journal of Forest Science, 1: 74-86. doi: 10.15372/ SJFS20170108
Terebova, E., Markovskaya, E., Androsova, V., Pavlova, M. and Oreshnikova, N. (2020): Cell wall functional activity and metal accumulation of halophytic plant species Plantago maritima and Triglochin maritima on the White Sea littoral zone (NW Russia). Czech Polar Reports, 10(2): 169-188. doi: 10.5817/CPR2020-2-14
Terebova, E. N., Pavlova, M. A. (2021): The halophyte Aster tripolium L. is a hyperaccumulator of Fe, Ni, Pb on the littoral of the White Sea. Advances of Modern Natural Science, 11: 144-150. (In Russian). doi: 10.17513/use.37726
Terebova, E. N., Pavlova, M. A. and Oreshnikova, N. V. (2023): Iron accumulation of halophytes in the littoral zone of the White Sea. Biology Bulletin, 50(4): 684-695. doi: 10.1134/ S1062359023700243
Toderich, K. N., Goldestein, R. I., Aparin, V. B., Idzikowska, K. and Rashidova, G. Sh. (2001): Environmental state and analysis of phytogenetic resources of halophytic plants for rehabilitation and Livestock feeding in arid sandy deserts of Uzbekistan. In: S-W. Breckle, W. Weste, W. Wucherer (eds.): Sustainable Land use in deserts. Springer, BerlinHeidelberg, New York, pp. 154–165. doi: 10.1002/ldr.936
Van Osten, M. J., Maggio, A. (2015): Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany, 111: 135-146. doi: 10.1016/j.envexpbot.2014.11.010
Wang, Y. J., Zhou, L. M., Zheng, X. M., Qian, P. and Wu, Y. H. (2013): Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Environmental Science and Pollution Research, 20(3): 1675-1685. doi: 10.1007/s11356-012-1082-y
Wang, Y., Branicky, R., Noё, A. and Hekimi, S. (2018): Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 6: 1915-1928. doi: 10.1083/jcb.201708007
Yildiztugay, E., Ozfidan-Konakci, C. and Kucukoduk, M. (2014): The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Ecotoxicology and Environmental Safety, 110: 21-30. doi: 10.1016/j.ecoenv. 2014.08.013
Zaier, H., Mudarra, A., Kutscher, D., Fernandes De La Campa, M. R., Abdelly, C. and Sanz- Medel, A. (2010): Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionisation-time of flight mass spectrometry. Analytica Chimica Acta, 671: 48-54. doi: 10.1016/j.aca.2010.04.054
Zhao, H., Ye, L., Wang, Y., Zhou, X., Yang, J., Wang, J., Cao, K. and Zou, Z. (2016): Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science, 7: 1814. doi: 10.3389/fpls.2016.01814
Zheng, M., Liu, Y., Zhang, G., Yang, Z., Xu, W. and Chen, Q. (2023): The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants (Basel), 12(9): 1675. doi: 10.3390/antiox12091675
Web sources / Other sources
[1] Order of Ministry of Agriculture of the Russian Federation of Decemder 13. 2016. №. 552. (2016). On the approval of water quality standards for water bodies of fishery value, including the standards of maximum permissible concentrations of harmful substances in the waters of water bodies of fishery value. (In Russian).
[2] Quality of sea waters according to hydrochemical indicators. Handbook 2020. Publ. : «Nauka», 2021, 230 p. (In Russian).
[3] State report on the state of the evironment of the Republic of Karelia in 2019 (2020). In: A. N. Gromtsev (eds.), Petrozavodsk, 248 p. (In Russian).
Copyright © 2025 Elena N. Terebova, Maria A. Pavlova, Natalia V. Oreshnikova