Do spectral reflectance indices distinguish between the greenness in three different moss species in moss banks on Galindez Island (Argentine Islands)?
Vol.14,No.1(2024)
Spectral reflectance indices of green state of Warnstorfia fontinaliopsis, Chorisodontium aciphyllum and Sanionia georgicouncinata on moss bank in the Galindez Island (Argentine Islands) were measured using a handheld spectrometer PolyPen RP 410 UVIS (Photon Systems Instruments, Drásov, Czech Republic) within the range of 380–790 nm in order to find suitable ones for effective classification of moss species within the same colour state (green). Among altogether 19 indices tested, there were some which did not differ significantly between the studied species (subgroup 1). Other indices (subgroup 2) were sensitive enough to distinguish one of the studied species from the others, and finally (subgroup 3), they were found statistically significantly different for all studied moss species. Also, the indices calculated at wavelengths typical for UAV spectral cameras (green, red and red edge channels) showed species-specific differences and can be potentially used to distinguish between different mosses within the same green physiological state indicating a good vigor.
spectral reflectance; maritime Antarctica; Warnstorfia fontinaliopsis; Chorisodontium aciphyllum; Sanionia georgicouncinata; ecological monitoring; NDVI; moss species resistance
Blackburn, G. A. (1998): Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66(3): 273-285.
Calviño-Cancela, M., Martín-Herrero, J. (2016): Spectral discrimination of vegetation classes in ice-free areas of Antarctica. Remote Sensing, 8: 856. doi: 10.3390/rs8100856
Carter, G. A. (1994): Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Remote Sensing, 15(3): 697-703.
Carter, G. A., Cibula, W. G. and Miller, R. L. (1996): Narrow-band reflectance imagery compared with thermalimagery for early detection of plant stress. Journal of Plant Physiology, 148(5): 515-522.
Convey, P., Chown, S. L., Clarke, A., Barnes, D. K., Bokhorst, S., Cummings, V., Ducklow, H. W., Frati, F., Green, T. G. A., Gordon, S., Griffiths, H. J., Howard-Williams, C., Huiskes, A. H. L., Laybourn-Parry, J., Lyons W. B., McMinn, A., Morley, S. A., Peck, L. S., Quesada, A., Robinson, S. A., Schiaparelli, S. and Wall, D. H. (2014): The spatial structure of Antarctic biodiversity. Ecological Monographs, 84(2): 203-244.
Daughtry, C. S., Walthall, C. L., Kim, M. S., De Colstoun, E. B. and McMurtrey III, J. E. (2000): Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2): 229-239.
Fretwell, P. T., Convey, P., Fleming, A. H., Peat, H. J. and Hughes, K. A. (2011): Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biology, 34: 273-281.
Gamon, J. A., Penuelas, J. and Field, C. B. (1992): A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1): 35-44.
Gitelson, A. A., Merzlyak, M. N. (1997): Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18(12): 2691-2697.
Gitelson, A. A., Merzlyak, M. N. and Chivkunova, O. B. (2001): Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1): 38-45.
Gitelson, A. A., Zur, Y., Chivkunova, O. B. and Merzlyak, M. N. (2002): Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75(3): 272-281.
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. and Dextraze, L. (2002): Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3): 416-426.
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. and Strachan, I. B. (2004): Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3): 337-352.
Lovelock, C. E., Robinson, S. A. (2002): Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell & Environment, 25(10): 1239-1250.
Lucieer, A., Turner, D., King, D. H. and Robinson, S. A. (2014): Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. International Journal of Applied Earth Observation and Geoinformation, 27: 53-62.
Malenovský, Z., Turnbull, J. D., Lucieer, A. and Robinson, S. A. (2015): Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytologist, 208(2): 608-624.
Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D. and Robinson, S. A. (2017): Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods in Ecology and Evolution, 8(12): 1842-1857.
Miranda, V., Pina, P., Heleno, S., Vieira, G., Mora, C. and Schaefer, C. E. (2020): Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. Science of the Total Environment, 704: 135295.
Ochyra, R., Lewis Smith, R. I. and Bednarek-Ochyra, H. (2008): The illustrated moss flora of Antarctica. Cambridge, Cambridge University Press, xvii + 685 p.
Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J. and Field, C. B. (1994): Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment, 48(2): 135-146.
Peñuelas, J., Baret, F. and Filella, I. (1995a): Semi-empirical indices to assess carotenoids/ chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2): 221-230.
Peñuelas, J., Filella, I., Lloret, P., Mun Oz, F. and Vilajeliu, M. (1995b): Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing, 16(14): 2727-2733.
Perera-Castro, A. V., Flexas, J., González-Rodríguez, Á. M. and Fernández-Marín, B. (2021): Photosynthesis on the edge: Photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes. Photosynthesis Research, 149(1): 135-153.
Puhovkin, A., Smykla, J., Váczi, P. and Parnikoza, I. (2023): Spectral characteristics of bryophyte carpet and mat subformation showing a vitality-dependent color pattern: Comparison for two distant regions of maritime Antarctica. Czech Polar Reports, 13(1): 96-111.
Robinson, S. A., Wasley, J. and Tobin, A. K. (2003): Living on the edge – plants and global change in continental and maritime Antarctica. Global Change Biology, 9(12): 1681-1717.
Robinson, S. A., King, D. H., Bramley-Alves, J., Waterman, M. J., Ashcroft, M. B., Wasley, J., Turnbull, J. D., Miller, R. E., Ryan-Colton, E., Benny, T., Mullany, K., Clarke, L. J., Barry, L. A. and Hua, Q. (2018): Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nature Climate Change, 8(10): 879-884.
Rondeaux, G., Steven, M. and Baret, F. (1996): Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2): 95-107.
Roujean, J. L., Breon, F. M. (1995): Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3): 375-384.
Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. and Harlan, J. C. (1974): Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation NASA/ GSFC type III final report. Greenbelt, MD, USA.
Royles, J., Griffiths, H. (2015): Invited review: Climate change impacts in polar regions: Lessons from Antarctic moss bank archives. Global Change Biology, 21(3): 1041-1057.
Sandino, J., Bollard, B., Doshi, A., Randall, K., Barthelemy, J., Robinson, S. A. and Gonzalez, F. (2023): A green fingerprint of Antarctica: Drones, hyperspectral imaging, and machine learning for moss and lichen classification. Remote Sensing, 15(24): 5658.
Turner, D., Lucieer, A., Malenovský, Z., King, D. H. and Robinson, S. A. (2014): Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sensing, 6(5): 4003-4024.
Turner, D., Lucieer, A., Malenovský, Z., King, D. and Robinson, S. A. (2018): Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling. International Journal of Applied Earth Observation and Geoinformation, 68: 168-179.
Wierzgoń, M., Ivanets, V., Prekrasna-Kviatkovska, Y., Plášek, V. and Parnikoza, I. (2023): Moss bank composition on Galindez Island (Argentine Islands, maritime Antarctic). Polar Biology, 46(11): 1235-1249.
Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L. and Sampson, P. H. (2001): Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 3(4): 321-327.
Zarco-Tejada, P. J., Berjón, A., Lopez-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., González, M. R. and De Frutos, A. (2005): Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3): 271-287.
Zmarz, A., Karlsen, S. R., Kycko, M., Korczak-Abshire, M., Gołębiowska, I., Karsznia, I. and Chwedorzewska, K. (2023): BVLOS UAV missions for vegetation mapping in maritime Antarctic. Frontiers in Environmental Science, 11: 1154115.
Copyright © 2024 Anton Puhovkin, Ivan Parnikoza