Variability of solar UV radiation in the northern mountains of the Czech Republic, 2020–2021
Vol.14,No.1(2024)
Solar ultraviolet (UV) radiation has a crucial role in many atmospheric processes and a huge impact on living organisms. Its main positive effect is the synthesis of vitamin D, but it also causes problems such as sunburn, skin cancer or eye cataracts. In the mountains, high doses of UV frequently occur due to a specific combination of atmospheric and geographical factors such as a high ground reflection as a consequence of a large number of days with snow cover, or a lower concentration of atmospheric pollutants in comparison to lowland urban regions. This study used measurements of erythemal UV radiation from two high altitude areas: the Hrubý Jeseník Mountains (Vysoká hole meteorological station, 1 464 m a.s.l.) and the Giant Mountains (Luční bouda meteorological station, 1 413 m a.s.l.) in the Czech Republic, during 2020 and 2021. We evaluated the daily and monthly changes in erythemal dose and UV index. The maximum daily dose of 5.0 kJ.m-2 (8.9 of UV index) was measured on 28 June 2020 at Vysoká hole. The maximal UV index of 10.1 was observed at Luční bouda on 5 July 2020, while the maximum daily dose of 4.9 kJ.m-2 occurred on 14 June 2021. The main factors that caused changes in solar UV radiation were the amount of cloud cover as well as the total ozone column.
erythemal dose; UV index; ozone; cloud cover; Hrubý Jeseník; Giant Mountains
Antón, M., Piedehierro, A. A., Alados-Arboledas, L., Wolfran, E. and Olmo, F. J. (2012): Extreme ultraviolet index due to broken clouds at midlatitude site, Granada (southeastern Spain). Atmospheric Research, 118: 10-14. doi: 10.1016/j.atmosres.2012.06.007
Aun, M., Lakkala, K., Sanchez, R. D., Asmi, E., Nollas, F., Meinander, O., Sogacheva, L., De Bock, V., Arola, A., De Leeuw, G., Aaltonen, V., Bolsée, D., Čížková, K., Mangold, A., Metelka, L., Jakobson, E., Svendby, T. M., Gillotay, D. and Van Opstal, B. (2020): Solar UV radiation measurements in Marambio, Antarctica, during years 2017–2019. Atmospheric Chemistry and Physics, 20(10): 6037-6054. doi: 10.5194/acp-20-6037-2020
Bais, A. F., Bernhard, G., Mckenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P. and Deushi, M. (2019): Ozone-climate interactions and effects on solar ultraviolet radiation. Photochemical and Photobiological Sciences, 18(3): 602-640. doi: 10.1039/c8pp90059k
Barnes, P. W., Robson, T. M., Zepp, R. G., Bornman, J. F., Jansen, M. A. K., Ossola, R., Wang, Q. W., Robinson, S. A., Foereid, B., Klekociuk, A. R., Martinez-Abaigar, J., Hou, W. C., Mackenzie, R. and Paul, N. D. (2023): Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochemical and Photobiological Sciences, 22(5): 1049-1091. doi: 10.1007/s43630-023-00376-7
Bernhard, G. H., Fioletov, V. E., Grooss, J. U., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Müller, R. and Svendby, T. (2020): Record-breaking increases in Arctic solar ultraviolet radiation caused by exceptionally large ozone depletion in 2020. Geophysical Research Letters, 47(24): e2020GL090844. doi: 10.1029/2020GL090844
Calbó, J., Pagès, D. and González, J. A. (2005): Empirical studies of cloud effects on UV radiation: A review. Reviews of Geophysics, 43(2): RG2002. doi: 10.1029/2004RG000155
Čížková, K., Láska, K., Metelka, L. and Staněk, M. (2018): Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years. Atmospheric Chemistry and Physics, 18(3): 1805-1818. doi: 10.5194/acp-18-1805-2018
Cordero, R. R., Damiani, A., Ferrer, J., Jorquera, J., Tobar, M., Labbe, F., Carrasco, J. and Laroze, D. (2014): UV irradiance and albedo at Union Glacier Camp (Antarctica): A case study. PLoS One, 9(3): e90705. doi: 10.1371/journal.pone.0090705
Cordero, R. R., Feron, S., Damiani, A., Redondas, A., Carrasco, J., Sepúlveda, E., Jorquera, J., Fernandoy, F., Llanillo, P., Rowe, P. M. and Seckmeyer, G. (2022): Persistent extreme ultraviolet irradiance in Antarctica despite the ozone recovery onset. Scientific Reports, 12(1): 1266. doi: 10.1038/s41598-022-05449-8
Diffey, B. L. (2002): Sources and measurement of ultraviolet radiation. Methods, 28(1): 4-13. doi: 10.1016/S1046-2023(02)00204-9
Dolák, L., Řehoř, J., Láska, K., Štěpánek, P. and Zahradníček, P. (2023): Air temperature variability of the Northern Mountains in the Czech Republic. Atmosphere, 14(7): 1063. doi: 10.3390/atmos14071063
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T. and Bugliaro, L. (2016): The libRadtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development, 9(5): 1647-1672. doi: 10.5194/gmd-9-1647-2016
Fioletov, V. E., Kerr, J. B., Mcarthur, L. J. B., Wardle, D. I. and Mathews, T. W. (2003): Estimating UV index climatology over Canada. Journal of Applied Meteorology, 42(3): 417-433. doi: 10.1175/1520-0450(2003)042<0417:EUICOC>2.0.CO;2
Fountoulakis, I., Bais, A. F. (2015): Projected changes in erythemal and vitamin D effective irradiance over northern-hemisphere high latitudes. Photochemical and Photobiological Sciences, 14(7): 1251-1264. doi: 10.1039/c5pp00093a
Hlavinka, P., Trnka, M., Semerádová, D., Žalud, Z., Dubrovský, M., Eitzinger, J., Weihs, P., Simic, S., Blumthaler, M. and Schreder, J. (2007): Empirical model for estimating daily erythemal UV radiation in the Central European region. Meteorologische Zeitschrift, 16(2): 183-190. doi: 10.1127/0941-2948/2007/0191
Hollósy, F. (2002): Effects of ultraviolet radiation on plant cells. Micron, 33(2): 179-197. doi: 10.1016/s0968-4328(01)00011-7
Kerr, J.B., Seckmeyer, G., Bais, A. F., Bernhard, G., Blumthaler, M., Diaz, S. B., Krotkov, N., Lubin, D., Mckenzie, R. L., Sabziparvar, A. A. and Verdebout, J. (2003): Chapter 5: Surface Ultraviolet Radiation: Past and Future. In: CH. A. Ennis (ed.): Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and Monitoring Project – Report No. 47. World Meteorological Organization, Geneva, Switzerland, pp. 5.1–5.46.
Kerr, J. B., Fioletov, V. E. (2008): Surface ultraviolet radiation. Atmosphere-Ocean, 46(1): 159-184. doi: 10.3137/ao.460108
Kliegrová, S., Kašíčková, L. (2019): Změny teploty vzduchu a úhrnu srážek v období 1961–2016 v Krkonoších (Changes in air temperature and precipitation in the period 1961–2016 in the Giant Mountains). Meteorologické Zprávy, 72(3): 88-93.
Kylling, A., Dahlback, A. and Mayer, B. (2000): The effect of clouds and surface albedo on UV irradiances at a high latitude site. Geophysical Research Letters, 27(9): 1411-1414. doi: 10.1029/1999GL011015
Lakkala, K., Heikkilä, A., Kärhä, P., Ialongo, I., Karppinen, T., Karhu, J. M., Lindfors, A. V. and Meinander, O. (2017): 25 years of spectral UV measurements at Sodankylä. AIP Conference Proceedings, 1810: 110006. doi: 10.1063/1.4975568
Lakkala, K., Redondas, A., Meinander, O., Thölix, L., Hamari, B., Almansa, A. F., Carreno, V., García, R. D., Torres, C., Deferrari, G., Ochoa, H., Bernhard, G., Sanchez, R. and De Leeuw, G. (2018): UV measurements at Marambio and Ushuaia during 2000–2010. Atmospheric Chemistry and Physics, 18(21): 16019-16031. doi: 10.5194/acp-18-16019-2018
Litynska, Z., Köepke, P., De Backer, H., Gröbner, J., Schmalwieser, A.W. and Vuilleumier, L. (2012): Long term changes and climatology of UV radiation over Europe. COST Action 726–Final Scientific Report. European Union, Luxembourg, 128 p.
Lucas, R. M., Yazar, S., Young, A. R., Norval, M., De Gruijl, F. R., Takizawa, Y., Rhodes, L. E., Sinclair, C. A. and Neale, R. E. (2019): Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical and Photobiological Sciences, 18(3): 641-680. doi: 10.1039/c8pp90060d
Mayer, B., Kylling, A., Emde, C., Buras, R., Hamann, U., Gasteiger, J. and Richter, B. (2020): libRadtran User’s Guide. Edition for libRadtran version 2.0.4. 147 p.
Mckinlay, A. F., Diffey, B. L. (1987): A reference spectrum for ultraviolet induced erythema in human skin. CIE Journal, 6: 21-27.
Metelka, L. (2018): Hodnoty clear-sky UV indexu na území ČR (Clear-sky UV index values for the Czech Republic). Meteorologické Zprávy, 71(2): 33-38.
Petkov, B. H., Vitale, V., Di Carlo, P., Drofa, O., Mastrangelo, D., Smedley, A. R. D., Diémoz, H., Siani, A. M., Fountoulakis, I., Webb, A. R., Bais, A., Kift, R., Rimmer, J., Casale, G. R., Hansen, G. H., Svendby, T., Pazmiño, A., Werner, R., Atanassov, A. M., Láska, K., De Backer, H. D., Mangold, A., Köhler, U., Velazco, V. A., Stübi, R., Solomatnikova, A., Pavlova, K., Sobolewski, P. S., Johnsen, B., Goutail, F., Misaga, O., Aruffo, E., Metelka, L., Tóth, Z., Fekete, D., Aculinin, A. A., Lupi, A., Mazzola, M. and Zardi, F. (2023): An unprecedented Arctic ozone depletion event during spring 2020 and its impacts across Europe. Journal of Geophysical Research: Atmospheres, 128(3): e2022JD037581. doi: 10.1029/2022JD037581
Philipona, R., Schilling, A. and Schmucki, D. (2001): Albedo-enhanced maximum UV irradiance-measured on surfaces oriented normal to the sun. Photochemistry and Photobiology, 73(4): 366-369. doi: 10.1562/0031-8655(2001)073<0366:AEMUIM>2.0.CO;2
Podstawczynska, A. (2010): UV and global solar radiation in Łódź, Central Poland. International Journal of Climatology, 30(1): 1-10. doi: 10.1002/joc.1864
Pribullová, A., Chmelík, M. (2008): Typical distribution of the solar erythemal UV radiation over Slovakia. Atmospheric Chemistry and Physics, 8(17): 5393-5401. doi: 10.5194/acp-8-5393-2008
Pribullová, A., Chmelík, M. (2005): Effect of altitude and surface albedo variability on global UV-B and total radiation under clear-sky condition. Contributions to Geophysics and Geodesy, 35(3): 281-298.
Sabburg, J., Wong, J. (2000): The effect of clouds on enhancing UVB irradiance at the earth's surface: a one year study. Geophysical Research Letters, 27(20): 3337-3340. doi: 10.1029/2000GL011683
Schmucki, D., Voigt, S., Philipona, R., Fröhlich, C., Lenoble, J., Ohmura, A. and Wehrli, C. (2001): Effective albedo derived from UV measurements in the Swiss Alps. Journal of Geophysical Research-Atmospheres, 106(D6): 5369-5383. doi: 10.1029/2000JD900712
Schwarz, M., Baumgartner, D. J., Pietsch, H., Blumthaler, M., Weihs, P. and Rieder, H. E. (2018): Influence of low ozone episodes on erythemal UV-B radiation in Austria. Theoretical and Applied Climatology, 133(1–2): 319-329. doi: 10.1007/s00704-017-2170-1
Simic, S., Fitzka, M., Schmalwieser, A., Weihs, P. and Hadzimustafic, J. (2011): Factors affecting UV irradiance at selected wavelengths at Hoher Sonnblick. Atmospheric Research, 101(4): 869-878. doi: 10.1016/j.atmosres.2011.05.022
Svendby, T. M.; Fjæraa, A.-M., Nilsen, A.-C., Schulze, D. and Johnsen, B. (2023): Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: NILU Annual Report 2022. Norwegian Environment Agency, Oslo, Norway, 40 p.
Tichopád, D., Láska, K., Čížková, K. and Petkov, B. H. (2023): Springtime evolution of stratospheric ozone and circulation patterns over Svalbard archipelago in 2019 and 2020. Czech Polar Reports, 13(2): 271-288. doi: 10.5817/CPR2023-2-21
Tomanová, H., Pokorná, L. (2021): The effect of sun elevation, cloudiness, and altitude on the uv index in Czechia. Geografie, 126(2): 221-242. doi: 10.37040/geografie.2021.001
Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B. and Vandenbussche, F. (2020): Ultraviolet radiation from a plant perspective: The plant-microorganism context. Frontiers in Plant Science, 11: 597642. doi: 10.3389/fpls.2020.597642
Vaníček, K. (2001): Solar and ozone observatory Hradec Králové 1951–2001. Czech Hydrometeorological Institute, Prague, Czech Republic, 38 p.
Vaníček, K., Frei, T., Litynska, Z. and Schmalwieser, A. (1999): UV- index for the public: A guide for publication and interpretation of solar UV index forecasts for the public. European Union, Brussels, Belgium, 26 p.
Vitt, R., Laschewski, G., Bais, A. F., Diémoz, H., Fountoulakis, I., Siani, A. M. and Matzarakis, A. (2020): UV-index climatology for Europe based on satellite data. Atmosphere, 11(7): 727. doi: 10.3390/atmos11070727
Vuilleumier, L., Harris, T., Nenes, A., Backes, C. and Vernez, D. (2021): Developing a UV climatology for public health purposes using satellite data. Environ International, 146: 106177. doi: 10.1016/j.envint.2020.106177
Zeidler M., Banaš M. (2020): Historie, přítomnost a management nepůvodní kleče ve vztahu k vegetaci v Hrubém Jeseníku (Non-indigenous dwarf pine history, present, and management concerning vegetation in the Hrubý Jeseník Mts). Opera Corcontica, 57: 19-34.
Web sources / Other sources
[1] CIE (2006): Action Spectrum for the Production of Provitamin D3 in Human Skin. CIE 174: 2006. International Commission on Illumination, Vienna, Austria, 12p.
[2] WHO (2002): Global Solar UV Index: A Practical Guide. A Joint Recommendation of the World Health Organization, World Meteorological Organization, United Nations Environmental Programme, and the International Commission on Non-Ionizing Radiation Protection. World Health Organization, Geneva, Switzerland, 28 p.
[3] KRNAP (2024): Arctic-alpine tundra.
https://www.krnap.cz/en/nature/phenomena/arctic-alpine-tundra/
[4] WMO (2023): Guide to Instruments and Methods of Observation. Volume I – Measurement of Meteorological Variables. WMO-No. 8. World Meteorological Organization, Geneva, Switzerland, 574 p.
[5] ECMWF (2024): European centre for medium-range weather forecasts, ERA-5 reanalyses.
https://doi.org/10.24381/cds.adbb2d47
[6] NASA (2024): Earthdata. Giovanni.
https://giovanni.gsfc.nasa.gov/giovanni/
Software
[7] ESRI (2024): ArcGIS Pro. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
[8] WICKHAM, H. (2010): ggplot2: Elegant Graphics for Data Analysis. Journal of Statistical Software, 35.
Copyright © 2024 Marie Novotná, Kamil Láska, Klára Čížková, Ladislav Metelka, Martin Staněk