Summer Antarctic expeditions in seasonal stations as analogs for long-duration space exploration missions: A critical review
Vol.14,No.1(2024)
This critical review aims to compare the conditions of summer Antarctic expeditions in seasonal stations with key characteristics of long-duration space exploration missions (LDSEM). Utilizing NASA's Analog Assessment Tool and data from the COMNAP Antarctic Station Catalogue, along with scientific literature, the review identifies significant parallels for LDSEM analog research. We assess how seasonal and year-round stations differ and highlight aspects of where seasonal stations serve as a better or worse analog for LDSEM. Key findings include that while summer expeditions allow for more feasible evacuations than winter-overs, their access to medical care is more limited. Crowdedness in summer stations with shared rooms better represents LDSEM conditions than the lower density of winter-over settings. Varying daylight hours in summer stations provide a closer parallel to Mars or Moon surface missions than the continuous darkness of winter-over conditions. Additionally, constant hazards, risk management strategies, isolation, sensory deprivation, workload, leadership structures, autonomy, and communication challenges in summer stations align well with LDSEM scenarios. Conclusively, we propose a shift in perceptions, recognizing seasonal Antarctic expeditions as a valuable analog of planetary LDSEM with several advantages over traditionally accepted winter-over settings. Further comparative and longitudinal studies between seasonal and year-round Antarctic stations should be pursued to enhance LDSEM analog research and support interdisciplinary collaboration. This approach will not only advance progress in space exploration research but also improve the quality of life and safety in remote and extreme environments.
summer polar expedition; human space research; space analogs; seasonal Antarctic station; winter-overing
Afanasieva, L., Minochkin, D. and Kravchuk, S. (2017): Providing telecommunication services to antarctic stations. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), 1–4. doi: 10.1109/UkrMiCo.2017.8095419
Allain, A.-H., Apollonio, E., de Carvalho, A., Groemer, G., Hesterman, J., Mateus, D., O’Hara, B., Purewal, J. and Rozložník, M. (2023): International guidelines and standards for space analogs. https://img1.wsimg.com/blobby/go/a1cd7f9b-6747-465a-8f62-cb436d196cce /downloads/IGSA-STD-1 Final 2023-11-01.pdf?ver=1710778176378
Amini, K., Janabadi, E. D. and Fayaz, R. (2022): Lighting and illumination investigation of long-term residence on Mars for the case of a set of designed Martian Habitat Units (MHUs). Acta Astronautica, 192: 210-232. doi: 10.1016/j.actaastro.2021.12.021
Anderson, S. R., Dev, S. I. and Bell, S. T. (2024): The development and application of cognitive performance assessment for exploration class mission EVAs. Human Research Program-Investigators Working Group (HRP-IWG) Workshop.
Anzano, J., Abás, E., Marina-Montes, C., del Valle, J., Galán-Madruga, D., Laguna, M., Cabredo, S., Pérez-Arribas, L.-V., Cáceres, J. and Anwar, J. (2022): A review of atmospheric aerosols in Antarctica: From characterization to data processing. Atmosphere, 13(10): 1621. doi: 10.3390/atmos13101621
Backer, H. D., Bowman, W. D., Paton, B. C., Steele, P. and Thygerson, A. (1998): Wilderness first aid 1998. Sudbery: Jones and Bartlett, 2 p.
Basberg, B. L. (2017): Commercial and economic aspects of Antarctic exploration – from the earliest discoveries into the “Heroic Age.” The Polar Journal, 7(1): 205-226. doi: 10.1080/2154896X.2017.1324690
Bhatia, A., Malhotra, P. and Agarwal, A. (2013): Reasons for medical consultation among members of the Indian Scientific Expeditions to Antarctica. International Journal of Circumpolar Health, 72(1): 20175. doi: 10.3402/ijch.v72i0.20175
Blay, S. K. N. (1992): New trends in the protection of the Antarctic environment: The 1991 Madrid protocol. American Journal of International Law, 86(2): 377-399. doi: 10.2307/2203243
Bogdanov, I., Cherkezov, D., Velev, S. and Darlenski, R. (2023): UV radiation exposure of outdoor workers in Antarctica. Photochemistry and Photobiology, 99(4): 1208-1211. doi: 10.1111/php.13733
Brown, S. P., Mongold, S. M., Powell, T. L., Goss, S. E. and Schauer, S. G. (2023): Antarctic evacuation: A retrospective epidemiological study of medical evacuations on US Military Aircraft in Antarctica. Medical Journal, US Army Medical Center of Excellence (MEDCoE).
Bryden, A. (2024): RV Dimensions: Length, Width, and Height Explained. Neighbor Blog. https://www.neighbor.com/storage-blog/rv-dimensions-length-width-and-height-explained/
Burke, C. S., Shuffler, M. L. and Wiese, C. W. (2018): Examining the behavioral and structural characteristics of team leadership in extreme environments. Journal of Organizational Behavior, 39(6): 716-730. doi: 10.1002/job.2290
Burrow, R. (2015): The leading edge: Leadership as extreme work? Organization, 22(4): 606-610. doi: 10.1177/1350508415572458
Bussey, D. B. J., Fristad, K. E., Schenk, P. M., Robinson, M. S. and Spudis, P. D. (2005): Constant illumination at the lunar north pole. Nature, 434(7035): 842-842. doi: 10.1038/434842a
Carron, M., Globokar, P. and Sicard, B. A. (2016): Acute gastrointestinal haemorrhage on board a cruise ship in the Antarctic Peninsula. International Maritime Health, 67(4): 223-226. doi: 10.5603/IMH.2016.0040
Carron, M., Hamard, F., Levraut, J. and Blondeau, N. (2019): An acute coronary syndrome in Antarctica. International Maritime Health, 70(3): 167-170.
Cassaro, A., Pacelli, C., Aureli, L., Catanzaro, I., Leo, P. and Onofri, S. (2021): Antarctica as a reservoir of planetary analogue environments. Extremophiles, 1–22.
Choi, S.-D., Baek, S.-Y., Chang, Y.-S., Wania, F., Ikonomou, M. G., Yoon, Y.-J., Park, B.-K. and Hong, S. (2008): Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic Research Stations: Implications for long-range transport and local pollution. Environmental Science & Technology, 42(19): 7125-7131. doi: 10.1021/es801004p
Cockell, C. S. (2001): Martian polar expeditions: Problems and solutions. Acta Astronautica, 49(12): 693-706. doi: 10.1016/S0094-5765(01)00142-4
Cordero, R. R., Feron, S., Damiani, A., Redondas, A., Carrasco, J., Sepúlveda, E., Jorquera, J., Fernandoy, F., Llanillo, P., Rowe, P. M. and Seckmeyer, G. (2022): Persistent extreme ultraviolet irradiance in Antarctica despite the ozone recovery onset. Scientific Reports, 12(1): 1266. doi: 10.1038/s41598-022-05449-8
Cornelius, P. E. (1991): Life in Antarctica. In: From Antarctica to outer space: Life in isolation and confinement (pp. 9–14). Springer.
Crawford, I. A., Anand, M., Cockell, C. S., Falcke, H., Green, D. A., Jaumann, R. and Wieczorek, M. A. (2012): Back to the Moon: The scientific rationale for resuming lunar surface exploration. Planetary and Space Science, 74(1): 3-14.
Cromwell, R. L., Huff, J. L., Simonsen, L. C. and Patel, Z. S. (2021): Earth-based research analogs to investigate space-based health risks. New Space, 9(4): 204-216. doi: 10.1089/space. 2020.0048
Crucian, B., Simpson, R. J., Mehta, S., Stowe, R., Chouker, A., Hwang, S. A., Actor, J. K., Salam, A. P., Pierson, D. and Sams, C. (2014): Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain, Behavior, and Immunity, 39: 23-32. doi: 10.1016/j.bbi.2014.01.011
Davis, G. A. (2015): A study of remote, cold regions habitations and design recommendations for new dormitory buildings in McMurdo station, Antarctica. Doctoral Dissertation. Texas A&M University, College Station, TX.
Detsis, B., Detsis, E. (2013): The benefits brought by space–General public versus space agencies perspectives. Acta Astronautica, 88: 129-137. doi: 10.1016/j.actaastro.2013.03.021
Ehlmann, B. L., Chowdhury, J., Marzullo, T. C., Eric Collins, R., Litzenberger, J., Ibsen, S., Krauser, W. R., DeKock, B., Hannon, M., Kinnevan, J., Shepard, R. and Douglas Grant, F. (2005): Humans to Mars: A feasibility and cost–benefit analysis. Acta Astronautica, 56(9–12): 851-858. doi: 10.1016/j.actaastro.2005.01.010
Elorzaa, I. M., Ceballosa, D., de la Peñaa, J. and Ceballosa, M. (2020): Astroland: An innovative permanent analog habitat to explore the capabilities of subsurface habitability and operations in mars. Communities, 3: 4.
Foucher, F., Hickman-Lewis, K., Hutzler, A., Joy, K. H. H., Folco, L., Bridges, J. C. C., Wozniakiewicz, P., Martínez-Frías, J., Debaille, V., Zolensky, M., Yano, H., Bost, N., Ferrière, L., Lee, M., Michalski, J., Schroeven-Deceuninck, H., Kminek, G., Viso, M., Russell, S., Smith, C., Zipfel, J. and Westall, F. (2021): Definition and use of functional analogues in planetary exploration. Planetary and Space Science, 197: 105162. doi: 10.1016/ j.pss.2021.105162
Fuentes–León, F., Peres de Oliveira, A., Quintero–Ruiz, N., Munford, V., Satoru Kajitani, G., Coimbra Brum, A., Schuch, A. P., Colepicolo, P., Sánchez‐Lamar, A. and Menck, C. F. M. (2020): DNA damage induced by late spring sunlight in Antarctica. Photochemistry and Photobiology, 96(6): 1215-1220. doi: 10.1111/php.13307
Golden, S. J., Chang, C.-H. D. and Kozlowski, S. W. J. (2018): Teams in isolated, confined, and extreme (ICE) environments: Review and integration. Journal of Organizational Behavior, 39(6): 701-715. doi: 10.1002/job.2288
Green, J. F. (2022): Hierarchy in regime complexes: Understanding authority in Antarctic governance. International Studies Quarterly, 66(1): 1-14. doi: 10.1093/isq/sqab084
Groemer, G., Gruber, S., Uebermasser, S., Soucek, A., Lalla, E. A., Lousada, J., Sams, S., Sejkora, N., Garnitschnig, S. and Sattler, B. (2020): The AMADEE-18 Mars analog expedition in the Dhofar region of Oman. Astrobiology, 20(11): 1276-1286.
Guly, H. (2012): Psychology during the expeditions of the heroic age of Antarctic exploration. History of Psychiatry, 23(2): 194-205. doi: 10.1177/0957154X11399203
Gunderson, E. K. E. (1973): Psychological studies in Antarctica: A review. In: Polar Human Biology (pp. 352–361). Elsevier. doi: 10.1016/B978-0-433-08155-5.50038-8
Gunderson, E. K. E. (2012): From Antarctica to outer space: Life in isolation and confinement. Springer Science & Business Media. pp. 1–2.
Heinicke, C., Arnhof, M. (2021): A review of existing analog habitats and lessons for future lunar and Martian habitats. REACH, 21–22, 100038. doi: 10.1016/j.reach.2021.100038
Heinicke, C., Foing, B. (2021): Human habitats: Prospects for infrastructure supporting astronomy from the Moon. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2188). doi: 10.1098/rsta.2019.0568
Hotwani, G. P., Tripathi, S. K. (2017): The reciprocal effect of crowding and experiential stress. IOSR Journal of Humanities and Social Science (IOSR-JHSS), 22(3): 16-19.
Hughes, K. A., Lee, J. E., Tsujimoto, M., Imura, S., Bergstrom, D. M., Ware, C., Lebouvier, M., Huiskes, A. H. L., Gremmen, N. J. M., Frenot, Y., Bridge, P. D. and Chown, S. L. (2011): Food for thought: Risks of non-native species transfer to the Antarctic region with fresh produce. Biological Conservation, 144(5): 1682-1689. doi: 10.1016/j.biocon.2011.03.001
Hunter, J. B., Emanuel, J. and Drysdale, A. E. (2003): Food Service and Food System Logistics at the South Pole: Lessons for a Lunar/Martian Planetary Surface Mission. doi: 10.4271/2003-01-2365
Ikeda, A., Ohno, G., Otani, S., Watanabe, K. and Imura, S. (2019): Disease and injury statistics of Japanese Antarctic research expeditions during the wintering period: Evaluation of 6837 cases in the 1st–56th parties – Antarctic health report in 1956–2016. International Journal of Circumpolar Health, 78(1): 1611327. doi: 10.1080/22423982.2019.1611327
Iserson, K. V. (2013): Medical planning for extended remote expeditions. Wilderness & Environmental Medicine, 24(4): 366-377. doi: 10.1016/j.wem.2013.05.005
Kanas, N., Sandal, G., Boyd, J. E., Gushin, V. I., Manzey, D., North, R., Leon, G. R., Suedfeld, P., Bishop, S., Fiedler, E. R., Inoue, N., Johannes, B., Kealey, D. J., Kraft, N., Matsuzaki, I., Musson, D., Palinkas, L. A., Salnitskiy, V. P., Sipes, W., Stuster, J. and Wang, J. (2009): Psychology and culture during long-duration space missions. Acta Astronautica, 64(7–8): 659-677. doi: 10.1016/j.actaastro.2008.12.005
Kansakar, P., Hossain, F. (2016): A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy, 36: 46-54. doi: 10.1016/j.spacepol.2016.05.005
Keeton, K. E., Whitmire, A., Feiveson, A. H., Leveton, L. B. and Shea, C. (2011): Analog Assessment Tool. https://www.nasa.gov/wp-content/uploads/2016/04/analog_assessment_tools. pdf?emrc=54bbdb
Krittanawong, C., Singh, N. K., Scheuring, R. A., Urquieta, E., Bershad, E. M., Macaulay, T. R., Kaplin, S., Dunn, C., Kry, S. F., Russomano, T., Shepanek, M., Stowe, R. P., Kirkpatrick, A. W., Broderick, T. J., Sibonga, J. D., Lee, A. G. and Crucian, B. E. (2022): Human health during space travel: State-of-the-Art Review. Cells, 12(1): 40. doi: 10.3390/cells12010040
Leane, E., Philpott, C. (2017): What’s wrong with ‘expeditioner’? Polar Record, 53(1): 105-106.
Lepore, S. J. (2012): Crowding: Effects on health and behavior. Encyclopedia of Human Behavior, 2.
Love, S. G., Harvey, R. P. (2014): Crew autonomy for deep space exploration: Lessons from the Antarctic search for meteorites. Acta Astronautica, 94(1): 83-92. doi: 10.1016/j.actaastro.2013. 08.001
Lovegrove, I. W. (2004): Leaders in extreme, isolated environments: A study of leader characteristics of managers of British Antarctic research stations. The University of Manchester (United Kingdom), 55 p.
Lowe, J., Warner, M. (2023): Optimising remote health care delivery in Antarctica: A review of the current capabilities utilised in the British Antarctic Territory. International Journal of Circumpolar Health, 82(1): 2230633. doi: 10.1080/22423982.2023.2230633
Lugg, D. J. (2000): Antarctic Medicine. JAMA, 283(16): 2082. doi: 10.1001/jama.283.16.2082
Mao, H., Yu, H., Tang, Y., Jiao, Y. and Zhang, K. (2024): Indoor environmental comfort in an antarctic research station: A case study. Journal of Building Engineering, 86: 108948. doi: 10.1016/j.jobe.2024.108948
McLean, L., Rock, J. (2016): The importance of Antarctica: Assessing the values ascribed to Antarctica by its researchers to aid effective climate change communication. The Polar Journal, 6(2): 291-306. doi: 10.1080/2154896X.2016.1241488
Mills, G. H., Mills, C. N. (2008): Challenges of air medical evacuation from Antarctica. Air Medical Journal, 27(6): 281-285. doi: 10.1016/j.amj.2008.07.009
Nash, M. (2022): Who should work in Antarctica? An exploration of the individual, social and cultural aspects of expeditioner recruitment. Antarctic Science, 34(6): 432-445. doi: 10.1017/S0954102022000372
Nicholson, W. L., Schuerger, A. C. and Setlow, P. (2005): The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1–2): 249-264. doi: 10.1016/j.mrfmmm.2004.10.012
Pagel, É. C., Costa Reis, N., de Alvarez, C. E., Santos, J. M., Conti, M. M., Boldrini, R. S. and Kerr, A. S. (2016): Characterization of the indoor particles and their sources in an Antarctic research station. Environmental Monitoring and Assessment, 188(3): 167. doi: 10.1007/s10661-016-5172-z
Pagel, É. C., Reis, N. C., de Alvarez, C. E., Santos, J. M., Beghi, S. P., Boechat, J. L., Nishikawa, M. M., Antunes, P. W. P. and Cassini, S. T. (2018): Indoor air quality in an Antarctic Research Station: Fungi, particles and aldehyde concentrations associated with building materials and architectural design. Indoor and Built Environment, 27(10): 1322-1340. doi: 10.1177/1420326X17719953
Pagel, J. I., Choukèr, A. (2016): Effects of isolation and confinement on humans-implications for manned space explorations. Journal of Applied Physiology, 120(12): 1449-1457. doi: 10.1152/japplphysiol.00928.2015
Palinkas, L. A. (2002): On the ice: Individual and group adaptation in Antarctica. Online Articals.
Palinkas, L. A., Suedfeld, P. (2008): Psychological effects of polar expeditions. The Lancet, 371(9607): 153-163. doi: 10.1016/S0140-6736(07)61056-3
Patel, Z. S., Brunstetter, T. J., Tarver, W. J., Whitmire, A. M., Zwart, S. R., Smith, S. M. and Huff, J. L. (2020): Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. Npj Microgravity, 6(1): 33. doi: 10.1038/s41526-020-00124-6
Pattarini, J. M., Scarborough, J. R., Lee Sombito, V. and Parazynski, S. E. (2016): Primary Care in Extreme Environments: Medical Clinic Utilization at Antarctic Stations, 2013–2014. Wilderness & Environmental Medicine, 27(1): 69-77. doi: 10.1016/j.wem.2015.11.010
Paul, M. A., Love, R. J., Hawton, A. and Arendt, J. (2015): Sleep and the endogenous melatonin rhythm of high arctic residents during the summer and winter. Physiology & Behavior, 141: 199-206. doi: 10.1016/j.physbeh.2015.01.021
Pavletić, B., Runzheimer, K., Siems, K., Koch, S., Cortesão, M., Ramos-Nascimento, A. and Moeller, R. (2022): Spaceflight virology: What do we know about viral threats in the spaceflight environment? Astrobiology, 22(2): 210-224. doi: 10.1089/ast.2021.0009
Pearce, D. A., Hughes, K. A., Lachlan-Cope, T., Harangozo, S. A. and Jones, A. E. (2010): Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles, 14(2): 145-159. doi: 10.1007/s00792-009-0293-8
Popel, S. I., Zelenyi, L. M. (2013): Future lunar missions and investigation of dusty plasma processes on the Moon. Journal of Plasma Physics, 79(4): 405-411. doi: 10.1017/S0022377813000214
Ráčková, L., Pompa, T., Zlámal, F., Barták, M., Nývlt, D. and Bienertová-Vašků, J. (2024): Physiological evidence of stress reduction during a summer Antarctic expedition with a significant influence of previous experience and vigor. Scientific Reports, 14(1): 3981. doi: 10.1038/s41598-024-54203-9
Rodriguez-Soria, B., García-García, M. Á. and Rezeau, A. (2024): Energy characterization of buildings in polar climate: Case study of Gabriel de Castilla Antarctic station. Energy and Buildings, 308: 114028. doi: 10.1016/j.enbuild.2024.114028
Romero, E., Francisco, D. (2020): The NASA human system risk mitigation process for space exploration. Acta Astronautica, 175: 606-615. doi: 10.1016/j.actaastro.2020.04.046
Russell, A., Gohlan, M., Smedley, A. and Densham, M. (2015): The ultraviolet radiation environment during an expedition across the Drake Passage and on the Antarctic Peninsula. Antarctic Science, 27(3): 307-316. doi: 10.1017/S0954102014000790
Schmidt, L. L., Wood, J. A. and Lugg, D. J. (2005): Gender differences in leader and follower perceptions of social support in Antarctica. Acta Astronautica, 56(9–12): 923-931. doi: 10.1016/j.actaastro.2005.01.019
Sells, S. B. (1973): The taxonomy of man in enclosed space. In: Man in isolation and confinement (pp. 280–303). Routledge.
Shao, Y., Li, Y., Wang, N., Xue, Y., Wang, T., Qiu, F., Lu, Y., Lan, D. and Wu, H. (2024): Effect of daily light exposure on sleep in polar regions: A meta – analysis. Journal of Sleep Research, e14144. doi: 10.1111/jsr.14144
Shaw, M. T. M., Dallimore, J. (2005): The medical preparation of expeditions: The role of the medical officer. Travel Medicine and Infectious Disease, 3(4): 213-223. doi: 10.1016/j.tmaid. 2005.02.002
Shurley, J. T. (1973): Antarctica is also a prime natural laboratory for the behavioural sciences. In: Polar Human Biology (pp. 430–435). Elsevier. doi: 10.1016/B978-0-433-08155-5.50045-5
Smith, D. J. K., Pouwels, C. R., Heemskerk, M., Cattani, B. M., Konijnenberg, E., Heemskerk, R. and Ogalde, S. (2022): Overview of the CHILL-ICE 2021 science experiments and research campaign. Space: Science & Technology.
Smith, J. J., Riddle, M. J. (2009): Sewage disposal and wildlife health in antarctica. In: Health of Antarctic Wildlife (pp. 271–315). Springer Berlin Heidelberg. doi: 10.1007/978-3-540-93923-8_16
Smith, S. (1969): Studies of small groups in confinement. Sensory Deprivation: Fifteen Years of Research, 374–403.
Stark, J. S., Smith, J., King, C. K., Lindsay, M., Stark, S., Palmer, A. S., Snape, I., Bridgen, P. and Riddle, M. (2015): Physical, chemical, biological and ecotoxicological properties of wastewater discharged from Davis Station, Antarctica. Cold Regions Science and Technology, 113: 52-62. doi: 10.1016/j.coldregions.2015.02.006
Stieber, M. (2024): Antarctica and beyond – unconsidered expectations of leaders in small isolated environments. Acta Astronautica, 220: 94-96. doi: 10.1016/j.actaastro.2024.04.008
Stuster, J. W. (1986): Space station habitability recommendations based on a systematic comparative analysis of analogous conditions. NASA, pp. 115–116.
Suedfeld, P. (2018): Antarctica and space as psychosocial analogues. REACH, 9–12: 1-4. doi: 10.1016/j.reach.2018.11.001
Suedfeld, P., Steel, G. D. (2000): The environmental psychology of capsule habitats. Annual Review of Psychology, 51(1): 227-253. doi: 10.1146/annurev.psych.51.1.227
Suedfeld, P., Weiss, K. (2000): Antarctica: Natural laboratory and space analogue for psychological research. Environment and Behavior, 32(1): 7-17.
Tafforin, C. (2015): Isolated and confined environments. In: Generation and applications of extra-terrestrial environments on Earth (pp. 173–181). River Publishers Aalborg, Denmark.
Tassa, A., Willekens, S., Lahcen, A., Laurich, L. and Mathieu, C. (2022): On-Going European Space Agency activities on measuring the benefits of Earth observations to society: Challenges, achievements and next steps. Frontiers in Environmental Science, 10. doi: 10.3389/fenvs. 2022.788843
Taylor, D. M., Gormly, P. J. (1997): Emergency medicine in Antarctica. Emergency Medicine, 9(3): 237-245. doi: 10.1111/j.1442-2026.1997.tb00394.x
Taylor, S. (2007): Food in the field: A nutritional analysis of New Zealand’s Antarctic field rations, 5 p.
Ten Kate, I. L., Preston, L. J. (2015): Earth Analogues. In: Generation and Applications of Extra-Terrestrial Environments on Earth (pp. 165–172). River Publishers.
Tin, T., Peden, J., O'Reilly, J., Bastmeijer, K. and Maher, P. T. (2019): Preservation amenity, research laboratory, or mineral reserve? International perspectives on the values of Antarctica. Polar Record, 55(2): 61-71. doi: 10.1017/S0032247419000214
Tissot, C., Lecordier, M. and Hitier, M. (2023): Surgical epidemiology of Antarctic stations from 1904 to 2022: A scoping review. International Journal of Circumpolar Health, 82(1). doi: 10.1080/22423982.2023.2235736
Tortello, C., Folgueira, A., Lopez, J. M., Didier Garnham, F., Sala Lozano, E., Rivero, M. S., Simonelli, G., Vigo, D. E. and Plano, S. A. (2023): Chronotype delay and sleep disturbances shaped by the Antarctic polar night. Scientific Reports, 13(1): 15957. doi: 10.1038/s41598-023-43102-0
Van Houdt, R., De Boever, P., Coninx, I., Le Calvez, C., Dicasillati, R., Mahillon, J., Mergeay, M. and Leys, N. (2009): Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microbial Ecology, 57(4): 640-648. doi: 10.1007/s00248-008-9462-z
Van Ombergen, A., Rossiter, A. and Ngo-Anh, T. J. (2021): ‘White Mars’ – nearly two decades of biomedical research at the Antarctic Concordia station. Experimental Physiology, 106(1): 6-17. doi: 10.1113/EP088352
Vessey, W. B., Landon, L. B. (2017): Team performance in extreme environments. In: The Wiley Blackwell Handbook of the Psychology of Team Working and Collaborative Processes (pp. 531–553). Wiley. doi: 10.1002/9781118909997.ch23
Visser, J. T. (2020): Patterns of illness and injury on Antarctic research cruises, 2004–2019: A descriptive analysis. Journal of Travel Medicine, 27(6). doi: 10.1093/jtm/taaa111
Vyshnav, P. N., Muller, M. (2016). Operational feasibility of human-robotic analog planetary missions: An analysis from AMADEE-15. 14th International Conference on Space Operations, 2384.
Wakerman, J. (2004): Defining remote health. Australian Journal of Rural Health, 12(5): 210-214. doi: 10.1111/j.1440-1854.2004.00607.x
Yair, Y., Reshef, L., Shopen-Gochev, C., Yoffe, G., Azulay, G., Aharonson, O. and Sorek-Abramovich, R. (2021): Temporal and spatial analysis of forward and backward microbial contamination in a Mars analog mission. Frontiers in Astronomy and Space Sciences, 8: 589147.
Yashar, M., Glasgow, C., Mehlomakulu, B., Ballard, J., Salazar, J. O., Mauer, S. and Covey, S. (2022): Mars dune alpha: A 3D-printed habitat by ICON/BIG for NASA’s Crew Health and Performance Exploration Analog (CHAPEA). In: Earth and Space 2022 (pp. 976–984).
Zaganelli, D. M., Alvarez, C. E. de. (2012): Relationship between noise and psychological comfort of the users in the Comandante Ferraz Antarctic Station. INCT-APA Annual Activity Report, 172–177. doi: 10.4322/apa.2014.084
Web sources / Other sources
[1] British Antarctic Survey (BAS) (2024): Food. British Antarctic Survey Natural Environment Research Council.
https://www.bas.ac.uk/polar-operations/life-in-the-polar-regions/food/
[2] Canisteo Principality News (2023): Life and Science at the Antarctic Station Concordia.
https://antarcticlands.org/life-and-science-at-the-antarctic-station-concordia/
[3] Council of Managers of National Antarctic Programs (2017): Antarctic Station Catalogue. COMNAP Secretariat.
[4] ESA, E. S. A. (2019): Spaceship Concordia.
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Concordia/Spaceship_Concordia
[5] Secretariat of the Antarctic Treaty (2024): Parties.
https://www.ats.aq/devAS/Parties?lang=e
[6] USAP, U. S. A. P. (2023): CHAPTER 6: Living and Working at USAP Facilities. 2023-2024 USAP Participant Guide.
https://usap.gov/USAPgov/travelAndDeployment/documents/ParticipantGuide-Chapter6.pdf
Copyright © 2024 Lucie Ráčková, Pavel Kapler, Julie Bienertová-Vašků