Springtime evolution of stratospheric ozone and circulation patterns over Svalbard archipelago in 2019 and 2020

Vol.13,No.2(2023)

Abstract

The polar vortex was exceptionally intense and persistent in late winter and spring 2020. The unusually cold lower stratosphere subsequently enabled ozone depletion over the Arctic. The behaviour of ozone layer and stratospheric parameters at the Ny-Ålesund station in the late winter and spring 2019 and 2020 were compared to each other by using reanalysed data, ground- and satellite-based observations and radiosonde measurement. The analyses based on the above-mentioned approaches confirmed a close relationship between ozone depletion and stratospheric circulation in 2020, when a strong polar vortex was observed, while in the case of the much weaker 2019 polar vortex such a relationship was insignificant. The deepest ozone decrease was found to occur at the end of March and in the first half of April 2020 at the 100–40 hPa pressure levels.


Keywords:
stratospheric ozone; stratospheric circulation; polar vortex; Svalbard archipelago
References

Antón, M., Kroon, M., López, M., Vilaplana, J. M., Bañón, M., van der A, R., Veefkind, J. P., Stammes, P. and Alados-Arboledas, L. (2011): Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula. Journal of Geophysical Research, 116: D22303. doi: 10.1029/2011JD016436

Arnone, E., Castelli, E., Papandrea, E., Carlotti, M. and Dinelli, B. M. (2012): Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach. Atmospheric Chemistry and Physics, 12: 9149-9165.

Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U. and Pedatella, N. M. (2021): Sudden stratospheric warmings. Reviews of Geophysics, 59.

Coy, L., Nash, E. R. and Newman, P. A. (1997): Meteorology of the polar vortex: Spring 1997. Geophysical Research Letters, 24: 2693-2696.

Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L., Pitari, G., Plummer, D. A., Pyle, J. A., Revell, L. E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, D., Yamashita, Y. and Zeng, G. (2018): Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 18: 8409-8438.

Farman, J., Gardiner, B. and Shanklin, J. (1985): Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315: 207-210.

Fuxiang, H., Suling, R., Shuangshuang, H., Xiangdong, Z. and Xuejiao, D. (2018): Spatiotemporal variations of the correlation between the Arctic atmospheric ozone and temperature. IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain: pp. 6544–6547.

Grooß, J.-U., Müller, R. (2021): Simulation of record Arctic stratospheric ozone depletion in 2020. Journal of Geophysical Research: Atmospheres, 126.

Harris, N. R. P., Lehmann, R., Rex, M., and von der Gathen, P. (2010): A closer look at Arctic ozone loss and polar stratospheric clouds. Atmospheric Chemistry and Physics, 10: 8499-8510.

Hauchecorne, A., Godin, S., Marchand, M., Hesse, B. and Souprayen, C. (2002): Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. Journal of Geophysical Research, 107: 8289.

Knowland, K. E., Ott, L. E., Duncan, B. N. and Wargan, K. (2017): Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis. Geophysical Research Letters, 44: 10691-10701.

Koch, G., Wernli, H., Buss, S., Staehelin, J., Peter, T., Liniger, M. A. and Meilinger, S. (2004): Quantification of the impact in mid-latitudes of chemical ozone depletion in the 1999/2000 Arctic polar vortex prior to the vortex breakup. Atmospheric Chemistry and Physics Discussions, 4: 1911-1940.

Kuttippurath, J., Nair, P. J. (2017): The signs of Antarctic ozone hole recovery. Scientific Reports, 7: 585.

Langematz, U. (2018): Future ozone in a changing climate. Comptes Rendus Geoscience. 350: 403-409.

Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A., Lee, S. H. and Nash, E. R. (2020): The remarkably strong Arctic Stratospheric Polar Vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. Journal of Geophysical Research: Atmospheres, 125.

Manney, G. L., Froidevaux, L., Santee, M. L., Zurek, R. W. and Waters, J. W. (1997): MLS observations of Arctic ozone loss in 1996–97. Geophysical Research Letters, 24: 2697-2700.

Manney, G. L., Livesey, N. J., Santee, M.L., Froidevaux, L., Lambert, A., Lawrence, Z. D., Millán, L. F., Neu, J. L., Read, W. G., Schwartz, M. J. and Fuller, R. A. (2020): Record -low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophysical Research Letters, 47.

Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole, L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt, H., Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P. F., Makshtas, A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der Gathen, P., Walker, K. A. and Zinoviev, N. S. (2011): Unprecedented Arctic ozone loss in 2011. Nature, 478: 469-475.

Manney, G. L., Zurek, R. W., Gelman, M. E., Miller, A. J. and Nagatani, R. (1994): The anomalous arctic lower stratospheric polar vortex of 1992–1993. Geophysical Research Letters, 21: 2405-2408.

McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyasf, M. and Madronichg, S. (2011): Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 10: 182-198.

Newman, P. A. (2010): Chemistry and dynamics of the Antarctic ozone hole. In: L. M. Polvani, A. H. Sobel, D. W. Waugh: The stratosphere: Dynamics, transport, and chemistry. Geophysical Monograph Series, 190: 43-57.

Newman, P. A., Kawa, S. R. and Nash, E. R. (2004): On the size of the Antarctic ozone hole. Geophysical Research Letters, 31.

Pazmiño, A., Godin-Beekmann, S., Hauchecorne, A., Claud, C., Khaykin, S., Goutail, F., Wolfram, E., Salvador, J. and Quel, E. (2018): Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring. Atmospheric Chemistry and Physics, 18: 7557-7572.

Petkov, B. H., Vitale, V., Di Carlo, P., Drofa, O., Mastrangelo, D., Smedley, A. R. D., Diémoz, H., Siani, A. H., Fountoulakis, I., Webb, A. R., Bais, A., Kift, R., Rimmer, J., Casale, G. R., Hansen, G. H., Svendby, T., Pazmiño, A., Werner, R., Atanassov, A. M., Láska, K., Backer, H. D., Mangold, A., Köhler, U., Velazco, V. A., Stübi, R., Solomatnikova, A., Pavlova, K., Sobolewski, B. S., Johnsen, B., Goutail, F., Mišaga, O., Aruffo, E., Metelka, L., Tóth, Z., Fekete, D., Aculinin, A. A., Lupi, A., Mazzola, M. and Zardi, F. (2023). An unprecedented Arctic ozone depletion event during spring 2020 and its impacts across Europe. Journal of Geophysical Research: Atmospheres, 128.

Petkov, B. H., Vitale, V., Tomasi, C., Bonafé, U., Scaglione, S., Flori, D., Santaguida, R., Gausa, M., Hansen, G. and Colombo, T. (2006): Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone. Applied Optics, 45: 4383-4395.

Pruscha, H. (2012): Statistical analysis of climate series: Analyzing, plotting, modeling, and predicting with R. Springer Science & Business Media.

Randel, W. J., Wu, F. (1999): A stratospheric ozone trends data set for global modeling studies. Geophysical Research Letters, 26: 3089-3092.

Rex, M., Salawitch, R. J., Harris, N. R. P., von der Gathen, P., Braathen, G. O., Schulz, A., Deckelmann, H., Chipperfield, M., Sinnhuber, B. M., Reimer, E., Alfier, R., Bevilacqua, R., Hoppel, K., Fromm, M., Lumpe, J., Küllmann, H., Kleinböhl, A., Bremer, H., von König, M., Künzi, K., Toohey, D., Vömel, H., Richard, E., Aikin, K., Jost, H., Greenblatt, J. B., Loewenstein, M., Podolske, J. R., Webster, C. R., Flesch, G. J., Scott, D. C., Herman, R. L., Elkins, J. W., Ray, E. A., Moore, F. L., Hurst, D. F., Romashkin, P., Toon, G. C., Sen, B., Margitan, J. J., Wennberg, P., Neuber, R., Allart, M., Bojkov, B. R., Claude, H., Davies, J., Davies, W., De Backer, H., Dier, H., Dorokhov, V., Fast, H., Kondo, Y., Kyrö, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. J., Moran, E., Nagai, T., Nakane, H., Parrondo, C., Ravegnani, F., Skrivankova, P., Viatte, P. and Yushkov, V. (2002): Chemical depletion of Arctic ozone in winter 1999/2000. Journal of Geophysical Research: Atmospheres, 107.

Rösevall, J. D., Murtagh, D. P., Urban, J., Feng, W., Eriksson, P., and Brohede, S. (2008): A study of ozone depletion in the 2004/2005 Arctic winter based on data from Odin/SMR and Aura/MLS. Journal of Geophysical Research, 113.

Solomon, S. (1999): Stratospheric ozone depletion' a review of concepts and history. Reviews of Geophysics, 37: 275-316.

Solomon, S., Garcia, R., Rowland, F. and Wuebbles, D. J. (1986): On the depletion of Antarctic ozone. Nature, 321: 755-758.

Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R. and Schmidt, A. (2016): Emergence of healing in the Antarctic ozone layer. Science, 353: 269-274.

Solomon, S., Portmann, R. W. and Thompson, D. W. J. (2007): Contrasts between Antarctic and Arctic ozone depletion. Proceedings of the National Academy of Sciences, 104: 445-449.

Strahan, S. E., Douglass, A. R. and Newman, P. A. (2013): The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations. Journal of Geophysical Research: Atmospheres, 118: 1563-1576.

Svendby, T. M., Johnsen, B., Kylling, A., Dahlback, A., Bernhard, G. H., Hansen, G. H., Petkov, B. H. and Vitale, V. (2021): GUV long-term measurements of total ozone column and effective cloud transmittance at three Norwegian sites. Atmospheric Chemistry and Physics, 21: 7881-2021.

Tilmes, S., Müller, R., Engel, A., Rex, M. and Russell III, J. M. (2006): Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophysical Research Letters, 33.

Torkildsen, T. (1984): Svalbard: Vart Nordligste Norge. Oslo, Forlaget Det Beste.

von der Gathen, P., Kivi, R., Wohltmann, I., Salawitch, R. J. and Rex, M. (2021): Climate change favours large seasonal loss of arctic ozone. Nature Communications, 12: 3886.

Waugh, D. W., Randel, W. J. (1999): Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. Journal of the Atmospheric Sciences, 56: 1594-1613.

Weber, M., Arosio, C., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Tourpali, K., Burrows, J. P. and Loyola, D. (2022): Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets. Atmospheric Chemistry and Physics, 22: 6843-6859.

Wohltmann, I., Von Der Gathen, P., Lehmann, R., Maturilli, M., Deckelmann, H., Manney, G. L., Davies, J., Tarasick, D., Jepsen, N., Kivi, R., Lyall, N. and Rex, M. (2020): Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020. Geophysical Research Letters, 47.

Web sources / Other sources

[1] ECMWF (2023): European centre for medium-range weather forecasts, ERA-5 reanalyses.
https://doi.org/10.24381/cds.adbb2d47

[2] NASA (2023a): Earthdata. Giovanni, https://giovanni.gsfc.nasa.gov/giovanni/

[3] NASA (2023b): Network for the Detection of Atmospheric Composition Change. https://www- air.larc.nasa.gov/missions/ndacc/data.html?station=ny.alesund/ames/o3sonde/

[4] Norwegian Polar Institute (2023): Norwegian Polar Institute Map Data and Services. https://geodata.npolar.no/

[5] TEMIS (2004): Valks, P.J.M., de Haan, J. F., Veefkind, J. P., van Oss R. F. and D.S. Balis, TOGOMI: An improved total ozone retrieval algorithm for GOME, XX Quadrennial Ozone Symposium, 1/6/2004-8/6/2004, C.S. Zerefos (Ed), Athens, University of Athens, pp. 129–130.

[6] WMO (2007): Scientific assessment of ozone depletion: 2006. Global ozone research and monitoring project – rep. 50. World Meteorological Organization.

Software

[7] ESRI (2023): ArcGIS Pro. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

[8] Kassambara, A. (2022): Ggpubr: ‘Ggplot2’ Based Publication Ready Plots.
https://cran.r-project.org/web/packages/ggpubr/index.html

[9] Wickham, H. (2010): ggplot2: Elegant Graphics for Data Analysis. Journal of Statistical Software, 35.

Metrics

0

Crossref logo

0

web of science logo


169

Views

141

PDF views