Spectral characteristics of bryophyte carpet and mat subformation showing a vitality-dependent color pattern: Comparison for two distant regions of maritime Antarctica

Vol.13,No.1(2023)

Abstract

Spectral characteristics of the bryophyte carpet and mat subformation on Nelson Island (South Shetlands Islands) and Galindez Island (Argentine Islands, Graham Coast) were analyzed using spectral reflectance characteristics. A set of 9 specific reflectance indices were calculated and compared between two locations for the same type of moss vegetation formed by Sanionia georgicouncinata and Warnstorfia spp. The Normalized Difference Vegetation Index (NDVI) is efficient in discriminating between the two contrasting color/ecological moss community classes, i.e. such as less vigorous or dead and vigorous. However, NDVI is not sufficiently sensitive to discriminate intermediate vitality states. Presented data also demonstrates that complementary application of two indices, NDVI and Photochemical Reflectance Index (PRI), can be promising for follow-up studies focused on the determination of the color differences attributed to ecolophysiological state of a moss community. With the same values of NDVI, bryophyte carpet and mat subformation on Galindez Island are characterized by higher values of the OSAVI, which can be used as an indicator for further monitoring.


Keywords:
spectral reflectance; maritime Antarctica; moss communities; ecological monitoring; NDVI; PRI; moss species resistance; Galindez Island; Nelson Island
References

Bednarek-Ochyra, H., Váňa, J., Ochyra, R. and Lewis Smith, R. I. (2000): The liverwort flora of Antarctica. Polish Academy of Sciences, W. Szafer Institute of Botany, Crakow, 236 p.

Blackburn, G. A. (1998): Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66(3): 273-285.

Carter, G. A. (1994): Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Remote Sensing, 15(3): 697-703.

Carter, G. A., Cibula, W. G. and Miller, R. L. (1996): Narrow-band reflectance imagery compared with thermalimagery for early detection of plant stress. Journal of Plant Physiology, 148(5): 515-522.

Casanovas, P., Black, M., Fretwell, P. and Convey, P. (2015): Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Research, 34(1): 25633.

Chi, J., Lee, H., Hong, S. G. and Kim, H. C. (2021): Spectral characteristics of the Antarctic vegetation: A case study of Barton Peninsula. Remote Sensing, 13(13): 2470.

Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P. and Gray, A. (2023): Antarctica's vegetation in a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 14(1): e810.

da Rosa, C. N., Pereira Filho, W., Bremer, U. F., Putzke, J., de Andrade, A. M., Kramer, G., Hillebrand, F. L. and de Jesus, J. B. (2022): Spectral behavior of vegetation in Harmony Point, Nelson Island, Antarctica. Biodiversity and Conservation, 31(7): 1867-1885.

Fern, R. R., Foxley, E. A., Bruno, A. and Morrison, M. L. (2018): Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecological Indicators, 94: 16-21.

Fretwell, P., Convey, P., Fleming, A., Peat, H. and Hughes, K. (2011): Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biology, 34: 273-281.

Gamon, J. A., Penuelas, J. and Field, C. B. (1992): A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1): 35-44.

Gitelson, A. A., Merzlyak, M. N. (1997): Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18(12): 2691-2697.

Hájek, J., Puhovkin, A., Giordano, D. and Sekerák Jr, J. (2022): What does critical temperature tell us about the resistance of polar lichens to freezing stress? Applicability of linear cooling method to ecophysiological studies. Czech Polar Reports, 12(2): 246-255.

Jawak, S. D., Luis, A. J., Fretwell, P. T., Convey, P. and Durairajan, U. A. (2019): Semiautomated detection and mapping of vegetation distribution in the antarctic environment using spatial-spectral characteristics of WorldView-2 imagery. Remote Sensing, 11(16): 1909.

Lindsay, D. C. (1971): Vegetation of South Shetland Islands. British Antarctic Survey Bulletin, 25: 59-83.

Lovelock, C. E., Robinson, S. A. (2002): Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell & Environment, 25(10): 1239-1250.

Malenovský, Z., Turnbull, J. D., Lucieer, A. and Robinson, S. A. (2015): Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New phytologist, 208(2): 608-624.

Ochyra, R., Lewis Smith, R. I. and Bednarek-Ochyra, H. (2008): The illustrated moss flora of Antarctica. Cambridge University Press, 704 p.

Orekhova, A., Barták, M., Hájek, J. and Morkusová, J. (2022): Species-specific responses of spectral reflectance and the photosynthetic characteristics in two selected Antarctic mosses to thallus desiccation. Acta Physiologiae Plantarum, 44(1): 6.

Pizarro, M., Contreras, R. A., Köhler, H. and Zúñiga, G. E. (2019): Desiccation tolerance in the Antarctic moss Sanionia uncinata. Biological Research, 52: 1-11.

Parnikoza, I., Rozhok, A., Convey, P., Veselski, M., Esefeld, J., Ochyra, R., Mustafa, O., Braun, C., Peter, H.-U., Smykla, J., Kunakh, V. and Kozeretska, I. (2018): Spread of Antarctic vegetation by the kelp gull: Comparison of two maritime Antarctic regions. Polar Biology, 41: 1143-1155.

Puhovkin, A., Bezsmertna, O. and Parnikoza, I. (2022): Interspecific differences in desiccation tolerance of selected Antarctic lichens: Analysis of photosystem II effectivity and quenching mechanisms. Czech Polar Reports, 12(1): 31-43.

Puhovkin, A., Hájek, J., Giordano, D., Sekerák, J. and Barták, M. (2023a): Cryoresistance differences between species of autotrops from polar regions sensed by chlorophyll fluorescence. Problems of Cryobiology and Cryomedicine, 33(1): 025-037.

Puhovkin, A., Kazantsev, T., Barták, M., Shepeta, Y., Dzhulai, A., Miryuta, N., Hájek, J. and Parnikoza, I. (2023b): Impact of environmental factors on the moss banks’ interannual development and their spectral/vitality parameters in Galindez Island (Argentine Islands, West Antarctica). Polar Science (submitted).

Rondeaux, G., Steven, M. and Baret, F. (1996): Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2): 95-107.

Roujean, J. L., Breon, F. M. (1995): Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3): 375-384.

Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. and Harlan, J. C. (1974): Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation NASA/GSFC type III final report. Greenbelt, MD, USA. 390 p.

Shortlidge, E. E., Eppley, S. M., Kohler, H., Rosenstiel, T. N., Zúñiga, G. E. and Casanova-Katny, A. (2017): Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum. Annals of Botany, 119(1): 27-38.

Smith, R. I., Corner, R. W. M. (1973): Vegetation of the Arthur Harbour-Argentine Islands region of the Antarctic Peninsula. British Antarctic Survey Bulletin, 33: 89-122.

Sotille, M. E., Bremer, U. F., Vieira, G., Velho, L. F., Petsch, C. and Simões, J. C. (2020): Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic vegetation. Applied Geography, 125: 102322.

Stanton, D. E., Merlin, M., Bryant, G. and Ball, M. C. (2013): Water redistribution determines photosynthetic responses to warming and drying in two polar mosses. Functional Plant Biology, 41(2): 178-186.

Steven, M. D. (1998): The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment, 63(1): 49-60.

Trnková, K., Barták, M. (2017): Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from polar regions. Phycological Research, 65(1): 44-50.

Váczi, P., Barták, M. (2022): Multispectral aerial monitoring of a patchy vegetation oasis composed of different vegetation classes. UAV-based study exploiting spectral reflectance indices. Czech Polar Reports, 12(1): 131-142.

Wasley, J., Robinson, S. A., Lovelock, C. E. and Popp, M. (2006): Some like it wet – biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Biology, 33(5): 443-455.

Whinam, J., Copson, G. (2006): Sphagnum moss: An indicator of climate change in the sub-Antarctic. Polar Record, 42(1): 43-49.

Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L. and Sampson, P. H. (2001): Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 3(4): 321-327.

Metrics

0

Crossref logo

0

web of science logo


584

Views

278

PDF views