Night LED illumination in the temperate regions as a model of polar day for algal cultivation in field-installed photobioreactors: Comparison of Svalbard and Central Europe

Vol.13,No.1(2023)

Abstract

The low-temperature algal biotechnology starts to develop in the Polar Regions, and especially in the Arctic. Light is crucial environmental factor in algal mass cultivation, therefore knowledge of the light environment and its modeling is crucial for design of the photobioreactors. The light conditions in three different environments were compared: natural diel light cycle during the polar summer (June-August) in Svalbard and in winter/spring (January – March) in the Central Europe outdoor and in the greenhouse photobioreactor, and in greenhouse photobioreactor equipped by additional night LED illumination in central Europe in winter/spring. In Svalbard, the monthly mean diel PAR values ranger from 126 to 395 µmol m-2 s-1, and the monthly diel sums of the PAR ranged from 2.38 to 7.47 MJ m-2 d-1. In the Central Europe in natural diel light cycle, the monthly mean diel PAR values and monthly diel sums of the PAR were generally lower, 57 - 248 µmol m-2 s-1 and 1.08 and 4.69 MJ m-2 d-1 in outdoor and 26 – 107 µmol m-2 s-1 and 0.50 – 2.03 69 MJ m-2 d-1 in the sun-illuminated photobioreactor. When additional night LED illumination, lasting from 12 to 14.7 hrs and from 12 to 15.3 hrs in 2021 and 2022, respectively, was provided, the monthly mean diel PAR values and monthly diel sums of the PAR increased to 479 – 598 µmol m-2 s-1 and 9.06 – 11.31 MJ m-2 d-1, respectively. Since the Svalbard maxima of diel sum of PAR are comparable to the values found in the night LED illuminated greenhouse photobioreactor, the night LED illumination in winter/spring in Central Europe should be proposed for model cultivations in the Polar Region in summer.


Keywords:
low-temperature algal biotechnology; Svalbard; Central Europe; light conditions; PAR
References

Abomohra, A. E.-F., Shang, H., El-Sheekh, M., Eladel, H., Ebaid, R., Wang, S. and Wang, Q. (2019): Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresource Technology, 288: 121514.

Addison, P. A., Bliss, L. C. (1980): Summer climate, microclimate, and energy budget of a polar semidesert on King Christian Island, N.W.T., Canada. Arctic and Alpine Research, 12(2): 161-170.

Blanken, W., Cuaresma, M., Wijffels, R. H. and Janssen, M. (2013): Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4): 333-340.

Courtin, G. M., Labine, C. L. (1977): Microclimatological studies of the Truelove Lowland. In: L. C. Bliss (ed.): Truelove Lowland, Devon Island, Canada: A High Arctic ecosystem. University of Alberta Press, Edmonton, pp. 73–106.

Doucha, J., Lívanský, K. (1996): The way of outdoor thin-layer cultivation of algae and blue-green algae and bioreactor for carrying out this method. CZ patent 3266-96, CZ 9966U1.

Edmundson, S. J., Huesemann, M. H. (2015): The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Research, 12: 470-476.

Falkowski, P., LaRoche, J. (1991): Acclimation to spectral irradiance in algae. Journal of Phycology, 27: 8-14.

Falkowski, P., Raven, J. A. (2007): Aquatic photosynthesis. 484 p.

Friedmann, E. I., McKay, C. P. and Nienow, J. A. (1987): The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biology, 7: 273-287.

Henry, G. H. R., Svoboda, J. and Freedman, B. (1994): Standing crop and net production of non-grazed sedge meadow of a polar desert oasis. In: J. Svoboda, B. Freedman (eds.): Ecology of a pola oasis. Alexandra Fiord, Ellesmere Island, Canada. Captus University Publications, Toronto, pp. 85–95.

Hodson, A. J., Gurnell, A. M., Washington, R., Tranter, M., Clark, M. J. and Hagen, J. O. (1998): Meteorological and runoff time-series characteristics in a small, high-Arctic glaciated basin, Svalbard. Hydrological Processes, 12(3): 509-526.

Hupp, J., Mccoy, J. I. E., Millgan, A. J. and Peers, G. (2021): Simultaneously measuring carbon uptake capacity and chlorophyll a fluorescence dynamics in algae. Algal Research, 58: 102399.

Komárek, J., Elster, J. (2008): Ecological background of cyanobacterial assemblages of the northern part of James Ross Island, Antarctica. Polish Polar Research, 29: 17-32.

Krezel, A., Pecherzewski, K. (1981): Preliminary data on total radiation in the region of Arctowski Station (King George Island, South Shetland Islands). Polish Polar Research, 2: 47-54.

Kumar, D., Kvíderová, J., Kaštánek, P. and Lukavský, J. (2017): The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light. Engineering in Life Sciences, 17(9): 1030-1038.

Kvíderová, J., Elster, J. (2017): Photosynthetic activity of Arctic Vaucheria (Xanthophyceae) measured in microcosmos. Czech Polar Reports, 7(1): 52-61.

Kvíderová, J., Shukla, S. P., Pushparaj, B. and Elster, J. (2017): Perspectives of low-temperature biomass production of polar microalgae and biotechnology expansion into high latitudes. In: R. Margesin (ed.): Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham, pp. 585–600.

Kvíderová, J., Souquieres, C.-E. and Elster, J. (2019): Ecophysiology of photosynthesis of Vaucheria sp. mats in a Svalbard tidal flat. Polar Science, 21: 172-185.

Labine, C. L. (1994): Meteorology and climatology of the Alexandra Fiord lowland. In: J. Svoboda, B. Freedman (eds.): Ecology of a polar oasis. Alexandra Fiord, Ellesmere Island, Canada. Captus University Publications, Toronto, pp. 23–39.

Láska, K., Witoszová, D. and Prošek, P. (2012): Weather pattern of the coastal zone of Petuniabukta, central Spitzbergen in the period 2008–2010. Polish Polar Research, 33(4): 297-318.

Lukavský, J., Kopecký, J., Kubáč, D., Kvíderová, J., Procházková, L. and Řezanka, T. (2023): The alga Bracteacoccus bullatus (Chlorophyceae) isolated from snow, as a source of oil comprising essential unsaturated fatty acids and carotenoids. Journal of Applied Phycology, 35(2): 649-660.

McKay, C. P., Nienow, J. A., Meyer, M. A. and Friedmann, E. I. (1993): Continuous nanoclimate data (1985-1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. In: D. H. Bromwich, C. R. Stearns (eds.): Antarctic meteorology and climatology: Studies based on automatic weather stations. American Geophysical Union, Washington, D.C., pp. 201–207.

Perner-Nochta, I., Posten, C. (2007): Simulations of light intensity variation in photobioreactors. Journal of Biotechnology, 131(3): 276-285.

Pulz, O., Scheibenbogen, K. (1998): Photobioreactors: Design and performance with respect to light energy input. In: T. Scheper (ed.): Bioprocess and Algae Reactor Technology, Apoptosis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 123–152.

Řezanka, T., Nedbalová, L., Lukavský, J., Střížek, A. and Sigler, K. (2017): Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. Algal Research, 22: 160-165.

Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A. and Morosinotto, T. (2012): Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE, 7(6): e38975.

Shukla, S. P., Kvíderová, J. and Elster, J. (2011): Nutrient requirements of polar Chlorella-like species. Czech Polar Reports, 1: 1-10.

Shukla, S. P., Kvíderová, J., Tříska, J. and Elster, J. (2013): Chlorella mirabilis as a potential species for biomass production in low-temperature environment. Frontiers in Microbiology, 4: 97.

Shukla, S. P., Kvíderová, J., Adamec, L. and Elster, J. (2020): Ecophysiological features of polar soil unicellular microalgae. Journal of Phycology, 56(2): 481-495.

Sommaruga, R., Chen, Y. and Liu, Z. (2009): Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microbial Ecology, 57(4): 667-674.

Souquieres, C.-E., Kvíderová, J. and Elster, J. (2017): Vaucheria sp. – a xanthophycean alga from Svalbard intertidal zone. Year 2. Czech Polar Reports, 7(2): 323-326.

Tenhunen, J. D., Lange, O. L., Hahn, S., Siegwolf, R. and Oberbauer, S. F. (1992): The ecosystem role of poikilohydric tundra plants. In: F. S. I. Chapin, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, J. Svoboda (eds.): Arctic ecosystem in a changing climate. An ecological perspective. Academic Press, San Diego, pp. 213–237.

Van, T. K., Haller, W. T. and Bowes, G. (1976): Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology, 58(6): 761-768.

Metrics

0

Crossref logo

0

web of science logo


525

Views

229

PDF views